Tarjan 算法——求解有向图强连通分量

一.算法简介

Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度。

我们定义:

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

这里写图片描述

例如:在上图中,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 三个区域可以相互连通,称为这个图的强连通分量。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

再Tarjan算法中,有如下定义。

DFN[ i ] : 在DFS中该节点被搜索的次序(时间戳)

LOW[ i ] : 为i或i的子树能够追溯到的最早的栈中节点的次序号

当DFN[ i ]==LOW[ i ]时,为i或i的子树可以构成一个强连通分量。

二.算法图示

以1为Tarjan 算法的起始点,如图

这里写图片描述

顺次DFS搜到节点6
这里写图片描述

回溯时发现LOW[ 5 ]==DFN[ 5 ] , LOW[ 6 ]==DFN[ 6 ] ,则{ 5 } , { 6 } 为两个强连通分量。回溯至3节点,拓展节点4.

这里写图片描述

拓展节点1 , 发现1再栈中更新LOW[ 4 ],LOW[ 3 ] 的值为1

这里写图片描述

回溯节点1,拓展节点2
这里写图片描述

自此,Tarjan Algorithm 结束,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 为图中的三个强连通分量。
这里写图片描述

不难发现,Tarjan Algorithm 的时间复杂度为O(E+V).

三.算法模板

先来一段伪代码压压惊:
tarjan(u){

  DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值

  Stack.push(u) // 将节点u压入栈中

  for each (u, v) in E // 枚举每一条边

    if (v is not visted) // 如果节点v未被访问过

        tarjan(v) // 继续向下找

        Low[u] = min(Low[u], Low[v])

    else if (v in S) // 如果节点u还在栈内

        Low[u] = min(Low[u], DFN[v])

  if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根

  repeat v = S.pop // 将v退栈,为该强连通分量中一个顶点

  print v

  until (u== v)

}

复制代码

 void Tarjan ( int x ) {
           dfn[ x ] = ++dfs_num ;
           low[ x ] = dfs_num ;
           vis [ x ] = true ;//是否在栈中
           stack [ ++top ] = x ;
           for ( int i=head[ x ] ; i!=0 ; i=e[i].next ){
                    int temp = e[ i ].to ;
                    if ( !dfn[ temp ] ){
                             Tarjan ( temp ) ;
                            low[ x ] = gmin ( low[ x ] , low[ temp ] ) ;
                  }
                  else if ( vis[ temp ])low[ x ] = gmin ( low[ x ] , dfn[ temp ] ) ;
          }
          if ( dfn[ x ]==low[ x ] ) {//构成强连通分量
                   vis[ x ] = false ;
                   color[ x ] = ++col_num ;//染色
                   while ( stack[ top ] != x ) {//清空
                            color [stack[ top ]] = col_num ;
                            vis [ stack[ top-- ] ] = false ;
                  }
                  top -- ;
          }
 }
  #include<cstdio>
  #include<algorithm>
  #include<string.h>
  using namespace std;
  struct node {
      int v,next;
  }edge[1001];
  int DFN[1001],LOW[1001];
  int stack[1001],heads[1001],visit[1001],cnt,tot,index;
 void add(int x,int y)
 {
     edge[++cnt].next=heads[x];
     edge[cnt].v = y;
     heads[x]=cnt;
     return ;    
 }
 void tarjan(int x)//代表第几个点在处理。递归的是点。
 {
     DFN[x]=LOW[x]=++tot;// 新进点的初始化。
     stack[++index]=x;//进站
     visit[x]=1;//表示在栈里
     for(int i=heads[x];i!=-1;i=edge[i].next)
     {
         if(!DFN[edge[i].v]) {//如果没访问过
             tarjan(edge[i].v);//往下进行延伸,开始递归
             LOW[x]=min(LOW[x],LOW[edge[i].v]);//递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情。
         }
         else if(visit[edge[i].v ]){  //如果访问过,并且还在栈里。
             LOW[x]=min(LOW[x],DFN[edge[i].v]);//比较谁是谁的儿子/父亲。就是链接对应关系
         }
     }
     if(LOW[x]==DFN[x]) //发现是整个强连通分量子树里的最小根。
     {
         do{
             printf("%d ",stack[index]);
             visit[stack[index]]=0;
             index--;
         }while(x!=stack[index+1]);//出栈,并且输出。
         printf("\n");
     }
     return ;
 }
 int main()
 {
     memset(heads,-1,sizeof(heads));
     int n,m;
     scanf("%d%d",&n,&m);
     int x,y;
     for(int i=1;i<=m;i++)
     {
         scanf("%d%d",&x,&y);
         add(x,y);
     }
     for(int i=1;i<=n;i++)
          if(!DFN[i])  tarjan(1);//当这个点没有访问过,就从此点开始。防止图没走完
     return 0;
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值