题很巧妙,之前我还真不知道可以把矩阵问题换算到队列,用一维数组、队列解决(可能因为我太菜了),这个题的思路是真的巧妙
原题链接:https://www.acwing.com/problem/content/847/
解题思路:把不同的矩阵状态转化为一维字符串表示,从第一个初始矩阵开始,把每个可以达到的矩阵状态存入队列,挨个将队首元素出队,判断这个矩阵能达到的状态,将可以达到的状态入队,直到达到最终状态
#include<iostream>
#include<cstring>
#include<algorithm>
#include<unordered_map>//存字符串和距离的映射关系
#include<queue>//用队列存每个状态
using namespace std;
int bfs(string start){
string end = "12345678x";//标记最终想要达到的状态
unordered_map<string, int>d;
queue<string>q;//字符串队列,储存每个矩阵状态
q.push(start);//将初始矩阵入队
//移动数组
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
while(q.size()){//当数组不空时
auto t = q.front();//队首元素出队
q.pop();
if(t == end) return d[t];//如果此时队首元素已经达到end状态
int dis = d[t];//记录这个队首元素的步数值
int k = t.find('x');//找到一维数组中x的位置
int x = k % 3;//一维数组下标 %3是x点在矩阵中的横坐标
int y = k / 3;//一维数组的下标/3是x点在矩阵中的纵坐标
for(int i = 0; i < 4; i ++ ){//遍历x点要去的位置
int x1 = x + dx[i];
int y1 = y + dy[i];
if(x1 >= 0 && x1 < 3 && y1 >= 0 && y1 < 3){//如果x点可以到达这个位置
swap(t[k], t[y1 * 3 + x1]);//交换x点和目标位置
if(!d.count(t)){//如果交换后的矩阵没有出现过
d[t] = dis + 1;//交换后的矩阵对应的步数+1
q.push(t);//将交换后的矩阵入队
}
swap(t[k], t[y1 * 3 + x1]);//判断这个状态入队之后恢复矩阵,因为要进行四次循环判断四个位置
}
}
}
return -1;//如果一直没有找到合适的位置,就输出-1
}
int main()
{
string start;
for(int i = 0; i < 9; i ++ ){
char c;
cin>>c;
start += c;
}
cout<<bfs(start)<<endl;
return 0;
}