思路:大一线代矩阵变化解高斯消元
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
const double eps = 1e-6;
const int N = 110;
db a[N][N];
int n;
int gause(){
int c, r;
for(c = 0, r = 0; c < n; c ++ ){
int t = r;//记录当前遍历到哪一行
for(int i = r; i < n; i ++ ){//遍历找出第c列绝对值最大的一行
if(fabs(a[i][c]) > fabs(a[r][c])){
t = i;//标记这一行
}
}
if(fabs(a[t][c]) < eps) continue;//如果这一列最大值为0,说明他的约束方程可能在其他几行,,直接进入下一个循环
for(int i = c; i <= n; i ++ ){//将绝对值最大的一行和最上面的行(不是第0行)互换
swap(a[t][i], a[r][i]);
}
for(int i = n; i >=c; i -- ){//将这一行最前面不为0的数化为1,从后向前化简,避免第一个数化为1之后,后面的数都/1
a[r][i] /= a[r][c];
}
for(int i = r + 1; i < n; i ++ ){//将第c列第r行以下的元素都化为0
if(fabs(a[i][c]) > eps){//当这个元素不为0时,进行化简
for(int j = n; j >= c; j -- ){//依旧是从这一行的最后一个数进行计算
a[i][j] -= a[i][c] * a[r][j];//这一行第c个数需要化为0,(第r行的第c个数是1),a[j][c] -= a[j][c] * a[r][c](=1)= 0,后面的数按这个依次类推
}
}
}
r ++ ;//行数+1
}
if(r < n){//说明剩下方程的个数小于n,代表左侧存在某几行x的系数都为0
for(int i = r; i < n; i ++ ){//如果某一行x系数全为0,但等号右侧常数不为0,代表着这个方程无解
if(a[r][n] > eps) return 1;
}
return 2;//如果没哟存在无解的情况,就代表有多个解
}
for(int i = n - 1; i >= 0; i -- ){//存在唯一解,从下往上带入
for(int j = i + 1; j < n; j ++ ){
a[i][n] -= a[i][j] * a[j][n];//只需要输出常数部分,所以只需要对常数部分进行操作
//将除xi的其他x的系数化为0
}
}
return 0;
}
int main()
{
cin>>n;
for(int i = 0; i < n; i ++ ){
for(int j = 0; j <= n ; j ++ ){
cin>>a[i][j];
}
}
int t = gause();
if(!t){
for(int i = 0; i < n; i ++ ){
printf("%.2lf\n", a[i][n]);
}
}
else if(t == 1) cout<<"No solution"<<endl;
else cout<<"Infinite group solutions"<<endl;
return 0;
}