AcWing 883 高斯消元解线性方程组 题解(高斯消元)

思路:大一线代矩阵变化解高斯消元

#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

typedef double db;

const double eps = 1e-6;
const int N = 110;

db a[N][N];
int n;

int gause(){
	int c, r;
	for(c = 0, r = 0; c < n; c ++ ){
		int t = r;//记录当前遍历到哪一行 
		for(int i = r; i < n; i ++ ){//遍历找出第c列绝对值最大的一行 
			if(fabs(a[i][c]) > fabs(a[r][c])){
				t = i;//标记这一行 
			}
		}
		
		if(fabs(a[t][c]) < eps) continue;//如果这一列最大值为0,说明他的约束方程可能在其他几行,,直接进入下一个循环 
		
		for(int i = c; i <= n; i ++ ){//将绝对值最大的一行和最上面的行(不是第0行)互换 
			swap(a[t][i], a[r][i]);
		}
		
		for(int i = n; i >=c; i -- ){//将这一行最前面不为0的数化为1,从后向前化简,避免第一个数化为1之后,后面的数都/1 
			a[r][i] /= a[r][c];
		}
		
		for(int i = r + 1; i < n; i ++ ){//将第c列第r行以下的元素都化为0 
			if(fabs(a[i][c]) > eps){//当这个元素不为0时,进行化简 
				for(int j = n; j >= c; j -- ){//依旧是从这一行的最后一个数进行计算 
					a[i][j] -= a[i][c] * a[r][j];//这一行第c个数需要化为0,(第r行的第c个数是1),a[j][c] -= a[j][c] * a[r][c](=1)= 0,后面的数按这个依次类推 
				}	
			}
		}
		
		r ++ ;//行数+1 
	}
	
	if(r < n){//说明剩下方程的个数小于n,代表左侧存在某几行x的系数都为0 
		for(int i = r; i < n; i ++ ){//如果某一行x系数全为0,但等号右侧常数不为0,代表着这个方程无解 
			if(a[r][n] > eps) return 1; 
		}
		return 2;//如果没哟存在无解的情况,就代表有多个解 
	}
	
	for(int i = n - 1; i >= 0; i -- ){//存在唯一解,从下往上带入 
		for(int j = i + 1; j < n; j ++ ){
			a[i][n] -= a[i][j] * a[j][n];//只需要输出常数部分,所以只需要对常数部分进行操作
			//将除xi的其他x的系数化为0 
		}
	}
	return 0;
}

int main()
{
	cin>>n;
	for(int i = 0; i < n; i ++ ){
		for(int j = 0; j <= n ; j ++ ){
			cin>>a[i][j];
		}
	}
	
	int t = gause();
	
	if(!t){
		for(int i = 0; i < n; i ++ ){
			printf("%.2lf\n", a[i][n]);
		}
	}
	else if(t == 1) cout<<"No solution"<<endl;
	else cout<<"Infinite group solutions"<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值