【ACWing】883. 高斯消元解线性方程组

题目地址:

https://www.acwing.com/problem/content/description/885/

输入一个 n n n元线性方程组,包含 n n n个方程,系数为实数。求解之。方程为: { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n = b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n = b_2\\...\\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n = b_n \end{cases} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn如果有无穷个解,则输出“Infinite group solutions”,如果无解,就输出“No solution”。答案保留 2 2 2位小数。

输入格式:
第一行包含整数 n n n。接下来 n n n行,每行包含 n + 1 n+1 n+1个实数,表示一个方程的 n n n个系数以及等号右侧的常数。

输出格式:
如果给定线性方程组存在唯一解,则输出共 n n n行,其中第i行输出第 i i i个未知数的解,结果保留两位小数。如果给定线性方程组存在无数解,则输出“Infinite group solutions”。如果给定线性方程组无解,则输出“No solution”。

数据范围:
1 ≤ n ≤ 100 1\le n\le 100 1n100
∣ a i j ∣ , ∣ b i ∣ ≤ 100 |a_{ij}|,|b_i|\le 100 aij,bi100

思路是高斯消元法。先定义三种变换,叫做矩阵的初等行变换:变换一,将两行调换;变换二,将某一行乘以一个非零常数;变换三,将某一行加上另一行的常数倍。算法分以下步骤来做:
1、从第一列开始进行循环,每次把当前列的绝对值最大的那一行换到最前面,然后通过变换二,将该行的第一个非零系数变为 1 1 1
2、通过变换三,将这行主元的下面所有非零元素变为 0 0 0
3、遍历下一列,重复进行上面操作。
遍历完前 n n n列后,如果当前没有走到最后一行的下一行,那说明简化之后的方程组的方程个数不足 n n n,那么这时必然是无解或无数解。则从系数全是 0 0 0的那行开始检查常数项,如果某个常数非 0 0 0,那就得到了 0 = b i 0=b_i 0=bi这个方程,是无解的;如果常数都是 0 0 0,那是无数解;如果简化之后的方程组的方程个数恰好是 n n n,那说明是唯一解,我们只需要将系数矩阵通过变换三变成单位阵即可。但是这个时候可以只变常数项,因为我们需要的只是变换后的常数项,这才是方程的解。代码如下:

#include <iostream>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];

int gauss() {
    int c, r;
    for (c = 0, r = 0; c < n; c++) {
    	// 先找到当前列的绝对值最大的那一行
        int t = r;
        for (int i = r; i < n; i++)
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;
		
		// 如果当前列全是0,那扫描下一个列
        if (fabs(a[t][c]) < eps) continue;
		
		// 将这个绝对值最大的那一行换到最前面(其实这里的最前面并不是指第一行,而是指消元的时候阶梯的下一行)
        for (int i = c; i < n + 1; i++) swap(a[t][i], a[r][i]);
        // 把这一行的第一个系数(主元)变成1,其余系数相应除以主元的旧值
        for (int i = n; i >= c; i--) a[r][i] /= a[r][c];
        // 做第三类初等行变换,把当前列消掉
        for (int i = r + 1; i < n; i++)
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j--)
                    a[i][j] -= a[r][j] * a[i][c];

        r++;
    }
	
	// 如果r < n,那说明最后的标准形的方程个数是小于n的,那不是唯一解
    if (r < n) {
    	// 检查左边系数全是0的方程中的常数项,如果发现一个非0,则无解
        for (int i = r; i < n; i++)
            if (fabs(a[i][n]) > eps)
                return 2;
        // 否则是无穷解
        return 1;
    }
	
	// 如果r = n,则方程有唯一解,将方程组系数矩阵化为单位阵,其实这里只需
	// 要把常数项化一下就行了,系数不需要真的变,因为这时候解只需要看常数项
    for (int i = n - 2; i >= 0; i--)
        for (int j = i + 1; j < n; j++)
            a[i][n] -= a[j][n] * a[i][j];

    return 0;
}

int main() {
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n + 1; j++)
            cin >> a[i][j];

    int t = gauss();
	
	// 如果有唯一解,就把常数项输出来
    if (t == 0) {
        for (int i = 0; i < n; i++) printf("%.2lf\n", a[i][n]);
    } else if (t == 1) puts("Infinite group solutions");
    else puts("No solution");

    return 0;
}

时间复杂度 O ( n 3 ) O(n^3) O(n3),空间 O ( 1 ) O(1) O(1)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您介绍一下 C 语言实现高斯线性方程组的方法。 首先,我们需要定义一个二维数组来存储系数矩阵和常数向量,例如: ``` float A[N][N+1]; ``` 其中,N 表示方程组的未知数个数。这个数组的第 i 行第 j 列表示系数矩阵中第 i 行第 j 列的元素,而最后一列则是常数向量。 接下来,我们需要进行高斯元的主要操作。具体步骤如下: 1. 针对每一列,找到该列中绝对值最大的元素,并将该元素所在的行与当前行交换。 2. 对于第 i 行,将其第 i 个元素除以该行第 i 列的系数,以使得第 i 个元素变为 1。 3. 对于第 j 列(j>i),将第 j 行减去第 i 行的系数乘以第 j 列的元素,以使得第 j 列的第 i 个元素变为 0。 4. 重复步骤 1-3,直到所有的未知数都求出来。 最后,我们可以通过回代法计算出每个未知数的值,具体方法如下: 1. 从最后一行开始,计算出该行未知数的值。 2. 对于第 i 行(i<n),计算出第 i 个未知数的值,即将第 i 行第 i+1 至第 n 个未知数的值带入方程中,计算出第 i 个未知数的值。 3. 重复步骤 1-2,直到所有的未知数都求出来。 以上就是 C 语言实现高斯线性方程组的基本步骤。需要注意的是,在实际应用中,可能会遇到系数矩阵不满足条件、有多或无等问题,需要根据具体情况进行特殊处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值