#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10, M = 2 * N, INF = 0x3f3f3f3f;
int n;
int h[N], e[M], ne[M], w[M], idx;
int d1[N], d2[N], up[N], p1[N];
/*
d1[i]记录以i为根节点向下遍历子树找到的最长距离
d2[i]记录以i为根节点向下遍历子树找到的第二长距离
up[i]记录从i向上遍历找到的最长距离
p1[i]记录以i为根节点向下遍历子树找到的最长距离的哪个子节点(i->p1[i]... 沿着这条路找到的最长距离)
*/
bool is_leaf[N];//记录叶子节点
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx ++ ;
}
int dfs_d(int u, int father){
d1[u] = d2[u] = -INF;//初始化最长距离和第二长距离
for(int i = h[u]; i != -1; i = ne[i]){
int j = e[i];
if(j == father) continue;//如果是父节点,直接跳过进入下一重循环
int d = dfs_d(j, u) + w[i];
if(d >= d1[u]){
d2[u] = d1[u];
d1[u] = d;
p1[u] = j;
}
else if(d > d2[u]) d2[u] = d;
}
if(d1[u] == -INF){//如果最大距离没有更新,代表这是一个叶节点
d1[u] = d2[u] = 0;
is_leaf[u] = true;
}
return d1[u];//返回最大值
}
void dfs_u(int u, int father){
for(int i = h[u]; i != -1; i = ne[i]){
int j = e[i];
if(j == father) continue ;
if(j == p1[u]) up[j] = max(up[u], d2[u]) + w[i];
/*
u由j向上得到,如果j节点向下进行遍历得到最大距离是沿j节点,则想求出j节点向上遍历找到的最大距离
只能用由u节点向下遍历找到的第二大距离拼接u->j的最大距离,这个距离就是j到达个点的最大距离
*/
else up[j] = max(up[u], d1[u]) + w[i];
dfs_u(j, u);
}
}
int main()
{
cin>>n;
memset(h, -1, sizeof h);//这一步很重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
for(int i = 0; i < n - 1; i ++ ){
int a, b, c;
cin>>a>>b>>c;
add(a, b, c);
add(b, a, c);
}
dfs_d(1, -1);
dfs_u(1, -1);
int res = d1[1];//res记录每个点最远距离的最小值
for(int i = 2; i <= n; i ++ ){
if(is_leaf[i]) res = min(res, up[i]);//如果是叶子节点,就让结果与其向上的寻找的长度比较,取较小值
else res = min(res, max(up[i], d1[i]));
}
cout<<res<<endl;
return 0;
}
AcWing 1073 树的中心 题解(实体规划—DP—树形DP)
最新推荐文章于 2023-02-07 15:58:34 发布