#include<bits/stdc++.h>
using namespace std;
const int N = 11;
int f[N][N];//f[i][j]表示i位,最高位为j的数的个数
void init() {
for (int i = 0; i <= 9; i ++ ) f[1][i] = 1;
for (int i = 2; i < N; i ++ ) {
for (int j = 0; j <= 9; j ++ ) {
for (int k = 0; k <= 9; k ++ ) {
if (abs(j - k) >= 2) {
f[i][j] += f[i - 1][k];
}
}
}
}
}
int dp(int n) {
if (!n) return 0; //wendy数至少是两位,如果是0,1~0的wendy数为0
vector<int>num;
while (n) num.push_back(n % 10), n /= 10;
int res = 0;//记录方案数
int last = -2;//记录上一位的数
for (int i = num.size() - 1; i >= 0; i -- ) {
int x = num[i];
for (int j = i == num.size() - 1; j < x; j ++ ) { //如果是第一次枚举,i是最高位,因为不能有前导0,所以此时枚举的j不能为0,
if (abs(j - last) >= 2) { //wendy数
res += f[i + 1][j];
}
}
if (abs(x - last) >= 2) last = x; //因为last代表上一位的数,所以last要放在本轮判断之后更改,如果本轮x<last,上面循环res的增量为0
else break;//如果不是wendy数,就退出循环
if (!i) res ++ ; //如果走到了最后一位方案数++
}
/*加上答案位数小于num.size的,因为f内储存的都是符合wendy数的个数,所以直接加上即可*/
for (int i = 1; i < num.size(); i ++ ) {
for (int j = 1; j <= 9; j ++ ) {
res += f[i][j];
}
}
return res;
}
int main()
{
init();
int l, r;
cin >> l >> r;
cout << dp(r) - dp(l - 1) << endl;
return 0;
}
AcWing 1083 Windy数 题解(动态规划—DP—数位DP)
最新推荐文章于 2024-05-13 18:39:36 发布