题目描述
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。
算法思想
Floyd算法是基于动态规划的思想,最开始只允许经过 1 1 1号顶点进行中转,接下来只允许经过 1 1 1和 2 2 2号顶点进行中转,…,允许经过 1 1 1~ n n n号所有顶点进行中转,求任意两点之间的最短路程。
动态规划
状态表示
f[k, i, j]
表示从i
点出发,只经过
1
1
1 ~
k
k
k这些点中转,到达j
点的最短距离。
状态转移
f[k, i, j] = min (f[k, i, j], f[k - 1, i, k] + f[k - 1, k, j])
因为
k
k
k阶段的状态只与
k
−
1
k−1
k−1阶段的状态有关,可以进行优化:
f[i, j] = min(f[i, j], f[i, k] + f[k, j])
初始状态
f[i][i] = 0
表示从自己出发到达自己的距离为
0
0
0。
代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int f[N][N], dis[N][N];
int n, m, k;
void floyd()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
}
int main()
{
cin >> n >> m >> k;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
//存在自环,但不存在负权回路,所以将自环初始化为0,保证不被输入
if(i == j) f[i][j] = 0;
else f[i][j] = INF;
for(int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
f[a][b] = min(f[a][b], c); //存在自环或重边
}
floyd();
while(k--)
{
int a, b;
cin >> a >> b;
//因为存在负权边,虽然(a,b)之间不存在路径,但结果可能会比INF小一些
if(f[a][b] >= INF / 2) puts("impossible");
else cout << f[a][b] << endl;
}
return 0;
}