图的多源汇最短路径——Floyd算法

题目描述

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。

数据保证图中不存在负权回路。

算法思想

Floyd算法是基于动态规划的思想,最开始只允许经过 1 1 1号顶点进行中转,接下来只允许经过 1 1 1 2 2 2号顶点进行中转,…,允许经过 1 1 1~ n n n号所有顶点进行中转,求任意两点之间的最短路程。

动态规划

状态表示

f[k, i, j]表示从i点出发,只经过 1 1 1 ~ k k k这些点中转,到达j点的最短距离。

状态转移

f[k, i, j] = min (f[k, i, j], f[k - 1, i, k] + f[k - 1, k, j])

因为 k k k阶段的状态只与 k − 1 k−1 k1阶段的状态有关,可以进行优化:
f[i, j] = min(f[i, j], f[i, k] + f[k, j])

初始状态

f[i][i] = 0 表示从自己出发到达自己的距离为 0 0 0

代码

#include <iostream>
#include <cstring>
using namespace std;

const int N = 210, INF = 0x3f3f3f3f;

int f[N][N], dis[N][N];
int n, m, k;

void floyd()
{
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
}

int main()
{
    cin >> n >> m >> k;

    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            //存在自环,但不存在负权回路,所以将自环初始化为0,保证不被输入
            if(i == j) f[i][j] = 0; 
            else f[i][j] = INF;

    for(int i = 1; i <= m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        f[a][b] = min(f[a][b], c); //存在自环或重边
    }

    floyd();

    while(k--)
    {
        int a, b;
        cin >> a >> b;
        //因为存在负权边,虽然(a,b)之间不存在路径,但结果可能会比INF小一些
        if(f[a][b] >= INF / 2) puts("impossible");
        else cout << f[a][b] << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值