题目描述
如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。
例如,4 可以变为 3,1 可以变为 7。
限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。
输入格式
输入一个正整数 n。
输出格式
输出不断进行数字变换且不出现重复数字的最多变换步数。
数据范围
1 ≤ n ≤ 50000 1≤n≤50000 1≤n≤50000
输入样例
7
输出样例
3
样例解释
一种方案为:4→3→1→7。
算法思想
根据题目描述, y y y是 x x x的约数之和(不包含 x x x)。对于任意一个 x x x来说,它的约数之和是固定的、不会发生变化,那么对于每一个 x x x而言,只有一个 y y y与之对应,如果在 y y y与 x x x之间连一条边,表示 y y y是 x x x父结点,那么 x x x只有一个父结点。推而广之,如果把 1 − n 1-n 1−n之间所有可以转换的数用边连接起来,那么就可以构成一堆树组成的森林。根据上述性质,题目就变成了在边权为1的森林中,求树的最长路径。
算法实现
- 预处理出每个数的约数之和
sum[i]
- 使用邻接表存储树,如果
i < sum[i]
,那么将i
加入到sum[i]
的链表中。注意不要将0
加入到树中,因为限定所有数字变换在不超过n
的正整数范围内进行。 - 对于
1~n
的每个数,如果是树的根结点,则求该树的最长路径。
时间复杂度
因为预处理出每个数的约数之和sum[i]
,循环次数为
n
+
n
2
+
n
2
.
.
.
+
1
=
n
×
(
1
+
1
2
+
1
3
+
.
.
.
.
+
1
n
)
n + \frac{n}{2} + \frac{n}{2} ... + 1 = n\times(1 + \frac{1}{2} + \frac{1}{3} +....+\frac{1}{n})
n+2n+2n...+1=n×(1+21+31+....+n1),是一个调和级数,因此时间复杂度
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)。
代码实现
#include <iostream>
#include <cstring>
using namespace std;
const int N = 50010;
int n;
int h[N], e[N], ne[N], idx;
int sum[N], st[N];
int ans;
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
int dfs(int u)
{
int d1 = 0, d2 = 0;
for(int i = h[u]; ~i; i = ne[i])
{
int v = e[i];
int d = dfs(v) + 1;
if(d >= d1) d2 = d1, d1 = d;
else if(d > d2) d2 = d;
}
ans = max(ans, d1 + d2);
return d1;
}
int main()
{
cin >> n;
//求每个数的约数之和
for(int i = 1; i <= n; i ++)
{
//枚举倍数
for(int j = 2; j <= n / i; j ++)
//累加j * i的约数
sum[j * i] += i;
}
//建树
memset(h, -1, sizeof h);
//注意从2开始,因为`1`的约数之和为0(不包含1本身)
//不满足题目要求:限定所有数字变换在不超过n的正整数范围内进行。
for(int i = 2; i <= n; i ++)
{
if(sum[i] < i)
{
add(sum[i], i);
st[i] = true; //标记i不是根结点
}
}
//找最长路径
for(int i = 1; i <= n; i ++)
{
//只搜索根结点
if(!st[i]) dfs(i);
}
cout << ans << endl;
return 0;
}