树的深度优先遍历:数字转换

题目描述

如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。

例如,4 可以变为 3,1 可以变为 7。

限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。

输入格式

输入一个正整数 n。

输出格式

输出不断进行数字变换且不出现重复数字的最多变换步数。

数据范围

1 ≤ n ≤ 50000 1≤n≤50000 1n50000

输入样例

7

输出样例

3

样例解释

一种方案为:4→3→1→7。

算法思想

根据题目描述, y y y x x x的约数之和(不包含 x x x)。对于任意一个 x x x来说,它的约数之和是固定的、不会发生变化,那么对于每一个 x x x而言,只有一个 y y y与之对应,如果在 y y y x x x之间连一条边,表示 y y y x x x父结点,那么 x x x只有一个父结点。推而广之,如果把 1 − n 1-n 1n之间所有可以转换的数用边连接起来,那么就可以构成一堆树组成的森林。根据上述性质,题目就变成了在边权为1的森林中,求树的最长路径。

算法实现

  1. 预处理出每个数的约数之和sum[i]
  2. 使用邻接表存储树,如果i < sum[i],那么将i加入到sum[i]的链表中。注意不要将0加入到树中,因为限定所有数字变换在不超过 n正整数范围内进行。
  3. 对于1~n的每个数,如果是树的根结点,则求该树的最长路径。

时间复杂度

因为预处理出每个数的约数之和sum[i],循环次数为 n + n 2 + n 2 . . . + 1 = n × ( 1 + 1 2 + 1 3 + . . . . + 1 n ) n + \frac{n}{2} + \frac{n}{2} ... + 1 = n\times(1 + \frac{1}{2} + \frac{1}{3} +....+\frac{1}{n}) n+2n+2n...+1=n×(1+21+31+....+n1),是一个调和级数,因此时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

代码实现

#include <iostream>
#include <cstring>
using namespace std;
const int N = 50010;
int n;
int h[N], e[N], ne[N], idx; 
int sum[N], st[N];
int ans;
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

int dfs(int u)
{
    int d1 = 0, d2 = 0;
    for(int i = h[u]; ~i; i = ne[i])
    {
        int v = e[i];
        int d = dfs(v) + 1;
        if(d >= d1) d2 = d1, d1 = d;
        else if(d > d2) d2 = d;
    }
    ans = max(ans, d1 + d2);
    return d1;
}

int main()
{
    cin >> n;
    //求每个数的约数之和
    for(int i = 1; i <= n; i ++)
    {
        //枚举倍数
        for(int j = 2; j <= n / i; j ++)
            //累加j * i的约数
            sum[j * i] += i;
    }
    //建树
    memset(h, -1, sizeof h);
    //注意从2开始,因为`1`的约数之和为0(不包含1本身)
    //不满足题目要求:限定所有数字变换在不超过n的正整数范围内进行。
    for(int i = 2; i <= n; i ++)
    {
        if(sum[i] < i)
        {
            add(sum[i], i);
            st[i] = true; //标记i不是根结点
        }
    }
    //找最长路径
    for(int i = 1; i <= n; i ++)
    {
        //只搜索根结点
        if(!st[i]) dfs(i);
    }    
    cout << ans << endl;    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值