每周一算法:背包问题(一)01背包

01背包

N N N件物品和一个容量是 M M M的背包。每件物品只能使用一次。第 i i i件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数, N N N M M M,用空格隔开,分别表示物品数量和背包容积。

接下来有 N N N 行,每行两个整数 v i v_i vi, w i w_i wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

样例 #1

样例输入 #1

4 5
1 2
2 4
3 4
4 5

样例输出 #1

8

提示

0 < N , M ≤ 1000 0<N,M≤1000 0<N,M1000

0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000

算法思想

状态表示

01背包是最基础的背包问题,其特点是每件物品仅有一个。而对于每件物品只有两种选择,放入背包或者不放入背包。

因此,可以将处理每件物品作为一个阶段,考虑在不同背包容量情况下的最大价值,将其状态定义为 f [ i ] [ j ] f[i][j] f[i][j],表示对于 i i i件物品,在背包容量为 j j j的情况下,背包获得的最大价值。

状态计算

在当前阶段,对于第 i i i件物品来说,可以选择放入背包或者不放入背包两种情况:

  • i i i件物品不放入背包,此时的最大价值为前 i − 1 i-1 i1件物品,在背包容量为 j j j的情况下的最大价值 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]
  • i i i件物品放入背包,前提是背包能够装得下第 i i i件物品,也就是背包容量 j ≥ v i j\ge v_i jvi。此时背包的最大价值为前 i − 1 i-1 i1件物品,在背包容量为 j − v i j-v_i jvi的情况下的最大价值 f [ i − 1 ] [ j − v i ] + w i f[i-1][j-v_i]+w_i f[i1][jvi]+wi。( v i 和 w i v_i和w_i viwi分别表示第 i i i件物品的体积和价值)

那么, f [ i ] [ j ] f[i][j] f[i][j]应该选择以上两种情况的最大值,即 f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v i ] + w i } f[i][j] = \max\{f[i-1][j], f[i-1][j-v_i]+w_i\} f[i][j]=max{f[i1][j],f[i1][jvi]+wi}

初始状态

f [ 0 ] [ 0 ] f[0][0] f[0][0]表示将前 0 0 0件物品装入容量为 0 0 0的背包中的产生的最大价值为 0 0 0

时间复杂度

状态数 n × m n\times m n×m,状态计算的时间复杂度为 O ( 1 ) O(1) O(1),总的时间复杂的为 O ( n × m ) O(n\times m) O(n×m)

代码实现

#include <iostream>
using namespace std;
const int N = 1010, M = 1010;
int f[N][M];
int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
    {
        int v, w;
        cin >> v >> w;
        for(int j = 0; j <= m; j ++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w);
        }
    }
    cout << f[n][m];
    return 0;
}

空间优化

滚动数组

根据上述状态转移方程: f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v i ] + w i } f[i][j] = \max\{f[i-1][j], f[i-1][j-v_i]+w_i\} f[i][j]=max{f[i1][j],f[i1][jvi]+wi},可以发现第 i i i阶段的状态只和第 i − 1 i-1 i1阶段的状态有关。因此可以考虑使用滚动数组进行空间优化。代码实现:

#include <iostream>
using namespace std;
const int M = 1010;
int f[2][M];
int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
    {
        int v, w;
        cin >> v >> w;
        for(int j = 0; j <= m; j ++)
        {
            f[i & 1][j] = f[i - 1 & 1][j];
            if(j >= v) f[i & 1][j] = max(f[i & 1][j], f[i - 1 & 1][j - v] + w);
        }
    }
    cout << f[n & 1][m];
    return 0;
}

一维状态表示

根据上述分析,第 i i i阶段的状态只和第 i − 1 i-1 i1阶段的状态有关。考虑能否直接用一维数组计算状态?那么需要保证的是要使用的是 i − 1 i-1 i1阶段的状态来计算第 i i i阶段的状态。

但是如果按照从小到大枚举背包容量,那么在使用的 f [ j − v ] f[j - v] f[jv]来计算 f [ j ] f[j] f[j]时,由于 j − v ≤ v j-v\le v jvv,因此 f [ j − v ] f[j - v] f[jv]已经被更新为第 i i i阶段的状态了,会导致结果发生错误。因此可以从后向前枚举背包容量,防止状态“污染”。代码实现:

#include <iostream>
using namespace std;
const int M = 1010;
int f[M];
int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
    {
        int v, w;
        cin >> v >> w;
        for(int j = m; j >= v; j --)
        {
            f[j] = max(f[j], f[j - v] + w);
        }
    }
    cout << f[m];
    return 0;
}

相关练习

  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值