状态压缩动态规划:最短Hamilton路径

题目链接

[状态压缩动态规划] 最短Hamilton路径

题目描述

给定一张 n n n 个点的带权无向图,点从 0 0 0~ n − 1 n-1 n1 标号,求起点 0 0 0 到终点 n − 1 n-1 n1 的最短 H a m i l t o n Hamilton Hamilton路径。 H a m i l t o n Hamilton Hamilton路径的定义是从 0 0 0 n − 1 n-1 n1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 n n n

接下来 n n n行每行 n n n个整数,其中第 i i i行第 j j j个整数表示点 i i i j j j的距离(记为 a [ i , j ] a[i,j] a[i,j])。

对于任意的 x x x, y y y, z z z,数据保证 a [ x , x ] = 0 a[x,x]=0 a[x,x]=0 a [ x , y ] = a [ y , x ] a[x,y]=a[y,x] a[x,y]=a[y,x] 并且 a [ x , y ] + a [ y , z ] > = a [ x , z ] a[x,y]+a[y,z]>=a[x,z] a[x,y]+a[y,z]>=a[x,z]

输出格式

输出一个整数,表示最短 H a m i l t o n Hamilton Hamilton路径的长度。

样例 #1

样例输入 #1

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5

样例输出 #1

18

提示

【数据范围】

1 ≤ n ≤ 20 1≤n≤20 1n20

0 ≤ a [ i , j ] ≤ 1 0 7 0≤a[i,j]≤10^7 0a[i,j]107

算法思想

根据题目描述, H a m i l t o n Hamilton Hamilton路径的定义是从 0 0 0 n − 1 n-1 n1 不重不漏地经过每个点恰好一次,求最短 H a m i l t o n Hamilton Hamilton路径的长度。

从数据范围来看, 1 ≤ n ≤ 20 1≤n≤20 1n20,点非常少,可以考虑使用状态压缩的方式表示每个点是否经过。例如,有 5 5 5个点,经过了点 0 、 2 、 3 0、2、3 023,其状态的二进制形式为 ( 01101 ) 2 (01101)_2 (01101)2

状态表示

f [ s t a t e ] [ i ] f[state][i] f[state][i]表示从起点走到 i i i点时,并且经过点的状态为 s t a t e state state的情况下,最短 H a m i l t o n Hamilton Hamilton路径的长度。

最终结果为 f [ 2 n − 1 ] [ n − 1 ] f[2^n-1][n-1] f[2n1][n1]

状态计算

计算 f [ s t a t e ] [ i ] f[state][i] f[state][i]可以根据最后一步走到 i i i点的情况分成若干类。

不妨设上一点为 j j j,那么 f [ s t a t e ] [ i ] f[state][i] f[state][i]应该为不包含 i i i的状态走到 j j j点的最短路径长度,再加上 a [ j ] [ i ] a[j][i] a[j][i],即
f [ s t a t e ] [ i ] = m i n { f [ s t a t e − ( 1 < < i ) ] [ j ] + a [ j ] [ i ] } f[state][i]=min\{f[state-(1<<i)][j]+a[j][i]\} f[state][i]=min{f[state(1<<i)][j]+a[j][i]}

注意:计算 f [ s t a t e ] [ i ] f[state][i] f[state][i]前提是状态 s t a t e state state已经包含了 i i i点和 j j j点。

初始状态

  • 题目中求最短路径长度,状态应初始化为无穷大。
  • 0 0 0点出发,因此 f [ 1 ] [ 0 ] = 0 f[1][0]=0 f[1][0]=0

时间复杂度

  • 状态数为 2 n × n 2^n\times n 2n×n
  • 状态计算过程中要枚举所有能到达 i i i的点 j j j,时间复杂度为 O ( n ) O(n) O(n)

总的时间复杂度为 O ( n 2 × 2 n ) = 400 × 1048576 = 419 , 430 , 400 O(n^2\times2^n)=400\times 1048576=419,430,400 O(n2×2n)=400×1048576=419,430,400

代码实现

#include <iostream>
#include <cstring>
using namespace std;
const int N = 20, M = 1 << 20, INF = 0x3f3f3f3f;
int a[N][N], f[M][N];
int main()
{
    int n;
    cin >> n;
    for(int i = 0; i < n; i ++)
        for(int j = 0; j < n; j ++)
            cin >> a[i][j];
    //初始状态
    memset(f, 0x3f, sizeof f);       
    f[1][0] = 0;
    //状态计算
    for(int state = 0; state < 1 << n; state ++)
    {
        for(int i = 0; i < n; i ++)
        {
            //状态中包含i点
            if(state >> i & 1)
            {
                //枚举i的上一点j
               for(int j = 0; j < n; j ++)
               {
                   //状态中包含j
                   if((state >> j & 1) && i != j)
                        f[state][i] = min(f[state][i], f[state - (1 << i)][j] + a[j][i]);
               }
            }
        }
    }
    
    cout << f[(1 << n) - 1][n - 1] << endl;
    return 0;
}
  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值