每周一算法:恰好经过K条边的最短路

题目描述

牛站

给定一张由 M M M 条边构成的无向图,点的编号为 1 ∼ 1000 1\sim 1000 11000 之间的整数。

求从起点 S S S 到终点 E E E 恰好经过 K K K 条边(可以重复经过)的最短路。

注意: 数据保证一定有解。

输入格式

1 1 1 行:包含四个整数 K , M , S , E K,M,S,E KMSE

2.. M + 1 2..M+1 2..M+1 行:每行包含三个整数,描述一条边的边长以及构成边的两个点的编号。

输出格式

输出一个整数,表示最短路的长度。

样例 #1

样例输入 #1

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

样例输出 #1

10

提示

【数据范围】
2 ≤ M ≤ 100 2≤M≤100 2M100,
2 ≤ K ≤ 1 0 6 2≤K≤10^6 2K106

算法思想

倍增 + Floyd 求状态

根据题目描述,求从起点 S S S到终点 E E E恰好经过 K K K条边的最短路。考虑「Floyd」算法中的状态 d [ K , i , j ] d[K,i,j] d[K,i,j]表示经过编号 1 ∼ K 1\sim K 1K的点进行中转、从顶点 i i i j j j的最短距离。本题可以用类似的状态 d [ K , i , j ] d[K,i,j] d[K,i,j]表示为恰好经过 K K K条边,从顶点 i i i j j j的最短距离。

要计算状态 d [ K , i , j ] d[K,i,j] d[K,i,j],很容易想到 d [ K , i , j ] = m i n { d [ K − 1 , i , k ] + g [ k , j ] } d[K,i,j]=min\{d[K-1, i, k]+g[ k, j]\} d[K,i,j]=min{d[K1,i,k]+g[k,j]},枚举一个中转点 k k k,从 K − 1 K-1 K1阶段的状态转移到 K K K。这样做的时间复杂度为 K × n 3 K\times n^3 K×n3,从数据范围来看, 2 ≤ M ≤ 100 , 2 ≤ K ≤ 1 0 6 2≤M≤100,2≤K≤10^6 2M1002K106,显然会TLE。

进一步分析,不妨假设 K = a + b K=a+b K=a+b,那么 d [ K , i , j ] = m i n { d [ a , i , k ] + d [ b , k , j ] } d[K,i,j]=min\{d[a,i,k]+d[b,k,j]\} d[K,i,j]=min{d[a,i,k]+d[b,k,j]},其中 k k k表示从 i i i出发经过恰好 a a a条边到达的顶点, 1 ≤ k ≤ n 1\le k\le n 1kn,如下图所示:
在这里插入图片描述
可以发现从顶点 i i i走到 k k k,和从顶点 k k k走到 j j j,这两个部分是完全独立的,并不相互依赖,所以先求前面、或者先求后面没有任何区别。也就是说,对于路径的组合可以是任意的,结合在一起答案不变,类似于加法结合律。

基于上述分析,可以使用快速幂“倍增”的思想,依次计算出 d [ 1 , i , j ] → d [ 2 , i , j ] → d [ 4 , i , j ] → . . . d[1,i,j]\to d[2,i,j]\to d[4,i,j]\to... d[1,i,j]d[2,i,j]d[4,i,j]...,可以将时间复杂度优化为 O ( l o g K × n 3 ) O(logK\times n^3) O(logK×n3)

离散化点集

除此之外,从给出的数据范围来看,边数 M ≤ 200 M\le200 M200 200 200 200条边最多连接 400 400 400个点,那么就需要对所有点进行离散化,重新编号为 1 ∼ n 1\sim n 1n

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 205;
int g[N][N], d[N][N];
int n, m, K, S, E;
map<int, int> idx; //离散化点集
void mul(int c[][N], int a[][N], int b[][N])
{
    static int temp[N][N];
    memset(temp, 0x3f, sizeof temp);
    for(int k = 1; k <= n; k ++)
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= n; j ++)
                temp[i][j] = min(temp[i][j], a[i][k] + b[k][j]);
    memcpy(c, temp, sizeof temp);
}
void qmi()
{
    //初始话状态数组
    memset(d, 0x3f, sizeof d);
    for(int i = 1; i <= n; i ++) d[i][i] = 0;
    
    while(K)
    {
        if(K & 1) mul(d, d, g); // d = d * g
        mul(g, g, g); //g = g * g
        K >>= 1;
    }
}
int main()
{
    cin >> K >> m >> S >> E;
    memset(g, 0x3f, sizeof g); //初始化邻接矩阵
    //离散化起点和终点,重新分配编号
    idx[S] = ++ n; idx[E] = ++ n; 
    S = idx[S], E = idx[E];
    
    for(int i = 0; i < m; i ++)
    {
        int a, b, c;
        cin >> c >> a >> b; //注意输入顺序
        //将点离散化,重新分配编号
        if(!idx.count(a)) idx[a] = ++ n;
        if(!idx.count(b)) idx[b] = ++ n;
        a = idx[a], b = idx[b]; 
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    
    qmi(); //快速幂,倍增求状态
    
    cout << d[S][E] << endl;
    return 0;
}
  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值