2021.01.06

本文介绍了动态规划的基础概念,通过线性动规、区域动规、树形动规和背包问题四个项目,阐述了如何解决最短路径问题。以辰辰采药问题为例,展示了0-1背包问题的动态规划解决方案。同时,文章提到了数字三角形问题,进一步巩固了动态规划在背包问题中的应用。学习资源包括两个在线教程链接,供读者深入学习。
摘要由CSDN通过智能技术生成

#学习动态规划DP入门
把多阶段过程转化为一系列单阶段的关系,通过逐个求解,创立了解决此类问题优化问题的新方法,将此称为动态规划。

  1. 项目1线性动规
  2. 项目2区域动规
  3. 项目3树形动规
  4. 项目4背包问题
    这四个项目的主要问题是关于最短路进问题
    我是新学,如有错误希望谅解,并给予我以帮助。

第一题
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式
第一行有 22 个整数 TT(1 \le T \le 10001≤T≤1000)和 MM(1 \le M \le 1001≤M≤100),用一个空格隔开,TT 代表总共能够用来采药的时间,MM 代表山洞里的草药的数目。

接下来的 MM 行每行包括两个在 11 到 100100 之间(包括 11 和 100100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式
输出在规定的时间内可以采到的草药的最大总价值。

输入输出样例
输入 #1复制
70 3
71 100
69 1
1 2
输出 #1复制
3
说明/提示
【数据范围】

对于 30%30% 的数据,M \le 10M≤10;
对于全部的数据,M \le 100M≤100。
这道题是完全的背包问题,主要思想是在一定的时间当中获得最大的收获。

#include<bits/stdc++.h>
using namespace std;
int k1[103],k2[103];//输入两个数组将时间与价值进行储存 
int a[1003][1003];
int main()
{int  t,m,r=1,i,j;
cin>>t>>m;
for(i=1;i<=m;i++)
{
	cin>>k1[i]>>k2[i];
//输入数据 
}
	for(i=1;i<=m;i++)
	for(j=t;j>=1;j--)//要确保在时间当中 
	{
		if(j>=k1[i])
		{
			a[i][j]=max(a[i-1][j-k1[i]]+k2[i],a[i-1][j]);
		}
		else 
		{
			a[i][j]=a[i-1][j];
		}
	}
	cout<<a[m][t]<<endl;
			return 0;
	
}

第二题
数字三角形
此类问题也是关于背包问题的关键
我是从网上学习的所以我推荐两篇供大家学习

链接: [link]https://www.bilibili.com/read/cv8259211
链接: [link]https://blog.csdn.net/qq_41045071/article/details/83062999

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值