问题描述
有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?
为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8
i(物品编号) | 1 | 2 | 3 | 4 |
w(体积) | 2 | 3 | 4 | 5 |
v(价值) | 3 | 4 | 5 | 6 |
总体思路
根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
动态规划的原理
动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
背包问题的解决过程
在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。
1、建立模型,即求max(V1X1+V2X2+…+VnXn);
2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;
3、寻找递推关系式,面对当前商品有两种可能性:
包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。
其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);
由此可以得出递推关系式:
j<w(i) V(i,j)=V(i-1,j)
j>=w(i) V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}
这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):
可以这么理解,如果要到达V(i,j)这一个状态有几种方式?
肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。
4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;
5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。
代码实现
为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数组元素由5个。
#include <iostream>
#include <string>
#include <string.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <algorithm>
#include <sstream>
#include <queue>
using namespace std;
int w[5] = { 0 , 2 , 3 , 4 , 5 }; //商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 }; //商品的价值3、4、5、6
int bagV = 8; //背包大小
int dp[5][9] = {{0}}; //动态规划表
int item[5];
void findWhat(int i, int j)
{
if (i >= 0)
{
if (dp[i][j] == dp[i - 1][j])
{
item[i] = 0;
findWhat(i - 1, j);
} else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i])
{
item[i] = 1;
findWhat(i - 1, j - w[i]);
}
}
}
void findMax()
{
for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= bagV; j++) {
if (j < w[i])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
}
}
}
void print()
{
//动态规划表的输出
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 9; j++) {
cout << dp[i][j] << ' ';
}
cout << endl;
}
//路径的输出
for (int i = 1; i < 4; i++)
{
cout << item[i] << " ";
}
cout << item[4] << endl;
}
int main(){
findMax();
findWhat(4, 8);
print();
return 0;
}
一维数组解法
设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程
fj=maxj{fj,f[j−a[i]]+b[i]}fj=maxj{fj,f[j−a[i]]+b[i]}
代码如下
#include "stdafx.h"
#include <iostream>
#include <string>
#include <string.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <algorithm>
#include <sstream>
#include <queue>
using namespace std;
int w[5] = { 0 , 2 , 3 , 4 , 5 }; //商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 }; //商品的价值3、4、5、6
int bagV = 8; //背包大小
int dp[5][9] = {{0}}; //动态规划表
int item[5];
int DP[500] = {0};
void findWhat(int i, int j)
{
if (i > 0)
{
if (j - w[i] >= 0 && DP[j] == DP[j - w[i]] + v[i])
{
item[i] = 1;
findWhat(i - 1, j - w[i]);
} else
{
item[i] = 0;
findWhat(i - 1, j);
}
}
}
void findMax()
{
for (int i = 1; i <= 4; i++) {
for (int j = bagV; j >= w[i]; j--) {
if (DP[j - w[i]] + v[i] > DP[j])
DP[j] = DP[j - w[i]] + v[i];
}
}
}
void print()
{
//动态规划表的输出
for (int j = 0; j < 9; j++) {
cout << DP[j] << ' ';
}
cout << endl;
//路径的输出
for (int i = 1; i < 4; i++)
{
cout << item[i] << " ";
}
cout << item[4] << endl;
}
int main(){
findMax();
findWhat(4, 8);
print();
return 0;
}
完全背包
有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大
特点 题干看似与01一样 但它的特点是每个物品可以无限选用
其实这个题也可以写二维和一维两种 但之前已经说过了二维的有一定局限 所以在此之介绍一维
一维
设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程
fj=maxj{fj,f[j−a[i]]+b[i]}
代码如下
#include "stdafx.h"
#include <iostream>
#include <string>
#include <string.h>
#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <algorithm>
#include <sstream>
#include <queue>
using namespace std;
int w[5] = { 0 , 2 , 3 , 4 , 5 }; //商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 }; //商品的价值3、4、5、6
int bagV = 8; //背包大小
int dp[5][9] = {{0}}; //动态规划表
int item[5] = {0};
int DP[500] = {0};
void findWhat(int i, int j)
{
while (i > 0)
{
while (j - w[i] >= 0 && DP[j] == DP[j - w[i]] + v[i])
{
item[i] ++;
j = j - w[i];
}
i--;
}
}
void findMax()
{
for (int i = 1; i <= 4; i++) {
for (int j = w[i]; j <= bagV; j++) {
if (DP[j - w[i]] + v[i] > DP[j])
DP[j] = DP[j - w[i]] + v[i];
}
}
}
void print()
{
//动态规划表的输出
for (int j = 0; j < 9; j++) {
cout << DP[j] << ' ';
}
cout << endl;
//路径的输出
for (int i = 1; i < 4; i++)
{
cout << item[i] << " ";
}
cout << item[4] << endl;
}
int main(){
findMax();
findWhat(4, 8);
print();
return 0;
}
多重背包
有n件物品和容量为m的背包 给出i件物品的重量以及价值 还有数量 求解让装入背包的物品重量不超过背包容量 且价值最大
特点 它与完全背包有类似点 特点是每个物品都有了一定的数量
状态转移方程为:
f[j]=max{f[j],f[j−k∗a[i]]+k∗b[i]}
【输入样例】
8 2
2 100 4
4 100 2
【输出样例】
400
代码如下
#include<iostream>
using namespace std;
int main()
{
int m,n;
cin>>m>>n;
int a[10001],b[10001],c[10001];
for(int i=1;i<=n;i++){
cin>>a[i]>>b[i]>>c[i];
}
int f[10001];
for(int i=1;i<=n;i++)
for(int j=m;j>=0;j--)
for(int k=0;k<=c[i];k++){
if(j-k*a[i]<0)break;
f[j]=max(f[j],f[j-k*a[i]]+k*b[i]);
}
cout<<f[m]<<endl;//最优解
}
参考:
(1) https://blog.csdn.net/qq_38410730/article/details/81667885
(2) https://blog.csdn.net/qq_36303472/article/details/68935954