题目描述
给定范围 [m, n],其中 0 <= m <= n <= 2147483647,返回此范围内所有数字的按位与(包含 m, n 两端点)。
示例1
输入: [5,7] 输出: 4
示例2
输入: [0,1] 输出: 0
思路1
当一个数+1时,总会有这么一个规律“某一位后的数字,全部被置为相反数”。举个例子:
- 010111 + 1 = 011000,则010111 & 011000 = 010000。那么,x & (x+1) 后几位相反数的“与操作”,结果总为0。
所以,当(m,m+1,...n-1,n)进行连续“与操作”时,会按照上述规律被抵消很大一部分,而只剩下n的前缀部分,最后只需将n归位。举个例子:
- m = 5(0101), n = 7 (0111)。不停右移,得到n前缀部分为01,最后归位前缀得res=0100=4
实现
int rangeBitwiseAnd(int m, int n) {
int offset = 0;
for (; m != n; ++offset) {
m >>= 1;
n >>= 1;
}
return n << offset;
}
思路2
从高位向低位与,利用 n&(n-1)的特性: n & (n - 1) 可以将 n 最右边的 1 变成 0
实现
int rangeBitwiseAnd(int m, int n) {
while (n > m) {
n &= (n - 1);
}
return n;
}
这思路和实现,给大神跪了!!!