豆瓣电影TOP250数据分析与可视化

一、项目背景

豆瓣是中国最大的影视评分社区之一,豆瓣电影TOP250收录了用户评价最好的250部电影。本项目使用Python对其进行数据分析与可视化,从而洞察评分、类型、国家等信息的分布特点。

二、数据来源

数据来源于网络爬虫采集的豆瓣TOP250信息,包含字段:
    •    电影名称、评分、评分人数、导演、主演、上映年份、国家/地区、电影类型等。
(如需要我可提供csv文件)

三、分析目标


    1.    评分分布情况
    2.    最常见的电影类型
    3.    不同国家/地区的电影数量分布
    4.    不同年份的电影数量分布
    5.    哪些导演上榜次数最多
    6.    可视化图表展示上述信息

四、关键代码与可视化展示

1. 导入库与读取数据

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('douban_top250.csv')  # 假设我们有这个文件

2. 评分分布直方图

plt.figure(figsize=(8,5))
sns.histplot(df['评分'], bins=10, kde=True, color='skyblue')
plt.title('豆瓣TOP250评分分布')
plt.xlabel('评分')
plt.ylabel('电影数量')
plt.show()

3. 最常见电影类型词云

from wordcloud import WordCloud

all_genres = ','.join(df['类型'].dropna())
wc = WordCloud(font_path='simhei.ttf', background_color='white').generate(all_genres)

plt.figure(figsize=(10,6))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.title('电影类型词云')
plt.show()

4. 上榜最多的导演

top_directors = df['导演'].value_counts().head(10)
sns.barplot(x=top_directors.values, y=top_directors.index, palette='Set2')
plt.title('上榜最多的导演 Top 10')
plt.xlabel('电影数量')
plt.show()

 5. 国家分布饼图

countries = df['地区'].value_counts().head(5)
plt.pie(countries, labels=countries.index, autopct='%1.1f%%', startangle=140)
plt.title('主要国家地区分布')
plt.show()

 用例

五、AI 工具使用说明

本案例整体分析思路、代码框架、可视化设计均在 ChatGPT 协助下完成。AI 工具主要用于:
    •    拟定分析目标
    •    代码生成与调试建议
    •    可视化图表优化
    •    博文内容结构设计

六、总结与反思

本案例以可视化的方式清晰展现了豆瓣TOP250电影的评分结构、导演集中度、类型和国家的多样性等特征。未来可扩展:
    •    增加 IMDb 数据对比
    •    分析评分人数与评分的关系
    •    建立推荐模型等。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值