动态区间最大值最小值区间和查询,支持区间设置,线段树

本文介绍如何使用线段树处理区间最大值、最小值和区间和的查询,同时支持区间值的设置操作。通过设置标记在更新时优化效率,在查询时将标记下推以获取正确结果。
摘要由CSDN通过智能技术生成

对区间 [0,N-1] 支持两种操作:

1. update(L, R, v) 将区间[L,R] 的所有值设置为 v;

2. query(L, R) 查询区间 [L, R] 的最大值、最小值、区间和;

利用线段树解决该问题,更新时,对某区间的设置操作不需要分解到其每一个子区间(否则可能要更新每一个叶子节点),只需在该区间上做设置标记;在查询时,遇到有标记的区间,将标记 pushdown 到子区间;

// 用线段树实现动态区间最小值、最大值、区间和查询,对区间A[0..N-1]支持更新操作和查询操作:
// update(int L, int R, int v) 将区间[L,R]所有元素值设置为v
// query(int L, int R ) 查询数组区间[L,R]的最小值、最大值、区间和
public class RangeTree4RangeUpdate {
	
	public static class Result {
		public int minv;
		public int maxv;
		public int sumv;
	}
	
	//N为源数组总长度,可查询区间为[0,N)
	int N = 0;		
	
	//M为最底层叶子节点数目,M = min { x | x = 2^k && x >= N }
	int M = 0;
	
	//线段树的数组表示
	int[] setv = null;	//各结点的设置标记
	int[] sumv = null;	//各结点的区间和
	int[] minv = null;	//各结点的最小值
	int[] maxv = null;	//各结点的最大值
	
	public RangeTree4RangeUpdate(int[] A) {
		build(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值