leetcode45_跳跃游戏2

一.  因为求解的是一个最优化问题,所以第一个想到的是动态规划,但是很可惜的是超时了.......

//令dp[i]为可以跳跃到i的最小跳跃次数.
class Solution {
public:
	int jump(vector<int>& nums) {
		int n = nums.size();
		vector<int> dp(n, 0);
		dp[0] = 0;
		for (int i = 1; i < n; i++) {
			//令第一个为INT_MAX,因为接下来要进行min的比较.
			dp[i] = INT_MAX;
			for (int j = i - 1; j >= 0; j--) {
				if (nums[j] + j >= i) {
					//找到最小的跳跃次数.
					dp[i] = min(dp[i], dp[j] + 1);
				}
			}
		}
		return dp[n - 1];
	}
};

二. 直接参考题解了.....

作者:windliang
链接:https://leetcode-cn.com/problems/jump-game-ii/solution/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by-10/

1.  解法一 :顺藤摸瓜

2.  贪婪算法,我们每次在可跳范围内选择可以使得跳的更远的位置。每次找局部最优,最后达到全局最优.

3.  写代码的话,我们用 end 表示当前能跳的边界,遍历数组的时候,到了边界,我们就重新更新新的边界。

class Solution {
public:
	int jump(vector<int>& nums) {
		int n = nums.size();
		int end = 0;//可以跳的最远的位置.
		int step = 0;//记录跳跃次数.
		int maxv = 0;//更新跳的最远的距离.
		//i<n-1,因为跳到最后不用更新边界.
		for (int i = 0; i < n - 1; i++) {
			//记录跳的最远的位置.
			maxv = max(maxv, nums[i] + i);
			if (i == end) {
				//如果到达边界,则更新边界,并令次数加1.
				end = maxv;
				step++;
			}
		}
		return step;
	}
};

时间复杂度:O(n)。

空间复杂度:O(1)。

4.  这里要注意一个细节,就是 for 循环中,i < nums.length - 1,少了末尾。因为开始的时候边界是第 0 个位置,steps 已经加 1 了。如果最后一步刚好跳到了末尾,此时 steps 其实不用加 1 了。如果是 i < nums.length,i 遍历到最后的时候,会进入 if 语句中,steps 会多加 1。

5.  解法二:顺瓜摸藤
第二个思路和动态规划差不多,不过时间复杂度比他低一点,因为有break.

我们知道最终要到达最后一个位置,然后我们找前一个位置,遍历数组,找到能到达它的位置,离它最远的就是要找的位置。然后继续找上上个位置,最后到了第 0 个位置就结束了。至于离它最远的位置,其实我们从左到右遍历数组,第一个满足的位置就是我们要找的。

//超时
class Solution {
public:
	int jump(vector<int>& nums) {
		int n = nums.size();
		int steps = 0;
		int last = n - 1;
		while (last != 0) {
			for (int j = 0; j < last; j++) {
				if (nums[j] + j >= last) {
					last = j;
					steps++;
					break;
				}
			}
		}
		return steps;
	}
};

可惜的是还是超时了.........

6. 改进的dp, 思路有点意思, 思想还是贪心.

//改进的dp,思路有点意思.
class Solution {
public:
	int jump(vector<int>& nums) {
		int n = nums.size();
		//base,如果长度为1,则不需要跳跃.
		if (n == 1) {
			return 0;
		}
		//dp[i]的含义是以i结尾最少跳跃次数.
		vector<int> dp(n, 0);
		for (int i = 0; i < n - 1; i++) {
			//查找从i所能跳跃到的位置,i+j.
			for (int j = nums[i]; j > 0; j--) {
				//如果i能跳到最后直接return.
				//而且第一个return的一定是次数最少的.
				if (i + j >= n - 1) {
					return dp[i] + 1;
				}
				//如果i+j没跳到,则为dp[i]+1.
				if (dp[i + j] == 0) {
					dp[i + j] = dp[i] + 1;
				}
				//如果已经有值了,说明被提前访问到.
				//那就直接break,因为次数不可能最少.
				else
					break;
			}
		}
		return -1;
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值