~~~~
在计算机科学中,分支法是建基于多项分支递归地一种很重要的算法范式。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
~~~~
这个技巧是很多高效算法的基础,如排序算法(归并排序、快速排序)、傅立叶变换(快速傅立叶变换)。
~~~~
另一个方面,理解及设计分治法算法的能力需要一定时间去掌握。正如以归纳法去证明一个理论,为了使递归能够推行,很多时候需要用一个较为概括或复杂的问题去取代原有问题。并且并没有一个系统性的方法去适当地概括问题。
~~~~
分治法这个名称有时亦会用于将问题简化为只有一个细问题的算法,例如用于在已排序的列中查找其中一项的折半搜索算法(或是在数值分析中类似的勘根算法)。这些算法比一般的分治算法更能有效地运行。。其中,加入算法使用尾部递归的话,便能转换成简单的循环。但在这广义之下,所有使用递归或循环的算法均被视为“分治算法”。因此,有些作者考虑“分治法”这个名称应只用于每个有最少两个子问题的算法。而只有一个子问题的曾被建议使用减治法这个名称。
~~~~
分治算法通常以数学归纳法来验证。而它的计算成本则多以解递归关系式来判定。
解决困难问题
~~~~ 分治法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题解决,再组合到一起形成大问题的答案。
算法效率
~~~~ 人民发现有很多效率很高的分治算法,比如Karatsuba快速乘法算法、快速排序算法和并行算法、矩阵乘法的施特拉森算法、快速傅里叶变换等。
循环递归
在每一层递归上都有三个步骤:
1.分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题。
2.解决:若子问题规模较小且易于解决时,则直接解。否则,递归解决子问题。
3.合并:将各子问题的解合并为原问题的解。
资料来源:维基百科-分治法