package xwq.sort;
import xwq.util.In;
import xwq.util.StdOut;
/**
* 使用
* 1、插入排序
* 2、三取样获取基准值
* 3、三向切分
* 优化快速排序
* @author batman
*
*/
public class QuickSortOptimal {
//插入排序数组大小,M的最佳值是和系统相关的,但是5-15之间的任意值在大多数情况下都能令人满意
private static int M = 10;
//排序
public static void sort(int a[]) {
partition(a,0,a.length-1);
}
//分区
private static void partition(int a[],int low,int high) {
if(low>=high) return;
int N = high - low + 1;
//使用插入排序优化
if(N<=M) {
insertSort(a,low,high);
return;
}
//使用三取样法获取基准位置
if(N<=40) {
int m = median3(a,low,low+N/2,high);
swap(a,low,m);
}
else {
int len = N/8;
int mid = low + N/2;
int m1 = median3(a,low,low+len,low+len+len);
int m2 = median3(a,mid-len,mid,mid+len);
int m3 = median3(a,high-len-len,high-len,high);
int m = median3(a,m1,m2,m3);
swap(a,low,m);
}
//基准值
int pivot = a[low];
//使用3向法优化数组移动
//l始终指向与pivot相等的值
//h如果指向比pivot小的值,则会被交换到i位置,循环执行过后,h指向与pivot相等的值
//i遍历待排序数组
int l = low, i = low+1, h = high;
while(i <= h) {
if(a[i] < pivot) swap(a,l++,i++);
else if(a[i] > pivot) swap(a,i,h--);
else i++;
}
partition(a,low,l-1);
partition(a,h+1,high);
}
//插入排序
private static void insertSort(int a[],int low,int high) {
for(int i = low+1;i<=high;i++) {
int insert = a[i];
int pos = i-1;
while(pos>=low && a[pos]>insert) {
a[pos+1] = a[pos];
pos--;
}
a[pos+1] = insert;
}
}
//返回3个数的中位数
private static int median3(int a[],int low,int mid,int high) {
if(a[low] > a[mid] && a[low] < a[high])
return low;
if(a[low] > a[mid] && a[mid] < a[high])
return mid;
return high;
}
//交换值
private static void swap(int a[],int i,int j) {
int t = a[i]; a[i] = a[j]; a[j] = t;
}
//输出
public static void print(int a[]) {
for (int i = 0; i < a.length; i++)
StdOut.print(a[i] + " ");
StdOut.println();
}
// 测试函数
public static void main(String[] args) {
int[] a = In.readInts(args[0]);
sort(a);
print(a);
}
}
排序-快速排序-最终优化(插入排序、中位数、三向partition)-以后快排就用这个了
最新推荐文章于 2024-05-29 14:30:01 发布