- 博客(37)
- 收藏
- 关注
原创 Python循环语句
本文介绍了Python中的两种循环语句:for循环和while循环。for循环用于遍历序列或可迭代对象,展示了遍历列表、字符串、字典等示例;while循环则通过条件判断重复执行代码块。文章还讲解了循环控制语句break、continue和else的用法,以及嵌套循环的实现。此外,介绍了enumerate()和zip()等高级循环技巧,最后通过数据处理和猜数字游戏两个实际案例演示了循环的应用。
2025-10-24 09:28:38
188
原创 Python中的input()函数
本文介绍了Python中input()函数的基本用法和输入类型处理。input()用于获取用户输入,默认返回字符串类型。文章展示了带提示信息的输入方法,并详细说明了如何将字符串输入转换为整数、浮点数和布尔值。运行示例清晰演示了各种转换场景,包括年龄计算、身高输入和学生状态判断。最后特别鼓励读者留言交流使用中遇到的问题。全文简洁明了,重点突出类型转换这一关键知识点。
2025-10-23 09:25:57
77
原创 Python字符串处理
本文介绍了Python字符串的基本操作和常用方法,包括字符串创建、索引切片、大小写转换、查找替换、分割连接等核心功能。重点讲解了字符串不可变特性、多种格式化方式(特别是f-string)以及常用字符串处理方法。文章还涵盖了转义字符使用和字符串检测技巧,为后续文件操作、数据处理等高级应用打下基础。内容简洁实用,适合Python初学者快速掌握字符串操作要点。
2025-10-22 08:41:10
314
原创 Python数据结构
本文介绍了Python中五种基本数据结构及其特点:1)列表(有序、可变、多种类型混合);2)元组(有序、不可变、适合存储固定数据);3)字典(键值对映射、快速查找);4)集合(无序、元素唯一、支持集合运算);5)字符串(字符序列、不可变)。每种数据结构都配有基础操作示例代码,包括元素的增删改查等操作。这些数据结构可嵌套使用以构建更复杂的数据模型,是Python编程的重要基础。
2025-10-21 08:46:23
1119
原创 Python基本数据类型
本文介绍了Python基础数据类型及其操作,包括注释方法、变量赋值、数值运算、字符串处理和布尔值操作。内容涵盖单行/多行注释写法,变量类型自动识别,整数/浮点数/复数的数学运算,字符串定义与常用方法(索引、切片、大小写转换),以及布尔值的比较与逻辑运算。文章通过示例代码直观展示各数据类型的使用方式,适合Python初学者快速掌握基础语法。
2025-10-20 17:23:32
191
原创 利用R绘制小提琴图
本文介绍了小提琴图这一数据可视化工具,它能展示完整的概率密度分布,比传统箱线图提供更丰富的信息。文章以R语言中的diamonds数据集为例,详细展示了如何使用ggplot2绘制精美的小提琴图。示例代码结合了箱线图、抖动点等元素,并采用Viridis配色方案和minimalist主题,清晰呈现了钻石价格按切工等级的分布情况。数据集包含53,940颗钻石的10个变量,如价格、克拉重量和切工等级等。
2025-10-20 11:14:29
490
原创 利用R绘制箱线图
利用R语言绘制箱线图非常方便,主要通过 boxplot() 函数或ggplot2包实现。箱线图中的箱子表示数据的四分位距(IQR);箱体内的线表示中位数;须线通常延伸到1.5倍IQR范围内的最远数据点;超出须线的点被视为异常值。欢迎大家在评论区留言或私信,交流学习心得或学习R的过程中遇到的问题。
2025-10-17 17:43:47
388
原创 利用R绘制条形图
本文介绍了在R中使用基础绘图函数barplot()和ggplot2包绘制多种条形图的方法。内容包括基础数据准备、简单条形图、水平条形图、分组条形图、堆叠条形图的实现,以及百分比条形图、误差条形图和金字塔条形图等高级图形绘制。每种图形都提供了完整的代码示例和效果图展示,适合R语言初学者学习和参考。文章最后邀请读者在评论区交流学习心得或遇到的问题。
2025-10-16 17:19:25
384
原创 利用R语言绘制直方图
mtcars(Motor Trend Car Road Tests)是R语言中最经典的内置数据集之一,包含了32辆汽车在1974年左右的性能测试数据。这个数据集源自1974年的《Motor Trend》杂志,常用于统计教学和数据分析演示。mpg: Miles/(US) gallon - 油耗(英里/加仑)cyl: Number of cylinders - 气缸数disp: Displacement (cu.in.) - 排量(立方英寸)hp: Gross horsepower - 马力。
2025-10-10 19:45:37
829
原创 利用R语言绘制散点图
mtcars(Motor Trend Car Road Tests)是R语言中最经典的内置数据集之一,包含了32辆汽车在1974年左右的性能测试数据。这个数据集源自1974年的《Motor Trend》杂志,常用于统计教学和数据分析演示。mpg: Miles/(US) gallon - 油耗(英里/加仑)cyl: Number of cylinders - 气缸数disp: Displacement (cu.in.) - 排量(立方英寸)hp: Gross horsepower - 马力。
2025-10-09 17:44:34
663
原创 R语言从入门到精通Day5之【数据输入】
数据输入是进行数据分析的第一步,从简单的文本数据导入到连接专业的数据库,R提供了多种数据输入的方法,可以根据你的数据来源选择合适的方法。欢迎大家在评论区留言或私信,交流学习心得或学习R的过程中遇到的问题。
2025-10-08 18:34:01
130
原创 R语言从入门到精通Day3之【包的使用】
R 包是 R 函数、数据、预编译代码的集合,以一种标准化的方式打包。你可以把它理解为一个扩展插件,分基础R包和拓展R包。安装 R 时就自带的包,提供了最基本的功能,如 mean(), plot() 等。由全球的 R 用户和统计学家开发,用于实现特定的功能,例如数据清洗 (dplyr)、绘图 (ggplot2)、机器学习 (tidymodels) 等。这正是 R 生态系统如此强大的原因。
2025-09-28 18:25:09
735
原创 利用R语言通过百度地图API进行批量地理编码
地理编码的意义在于将地球上的地理位置与数字编码联系起来,以方便对地理信息进行管理和分析。地理编码可以将地球表面的位置信息(如地址、经纬度、邮政编码等)转换为一系列数字编码,从而可以快速进行数据检索、分析、可视化等操作。地理编码被广泛应用于许多领域,如地图制作、地理信息系统、物流和交通管理、房地产和城市规划等。它可以提升企业、政府决策的精准性和科学性,便于人们更好地理解和掌握地球上各种资源和环境的分布和变化。
2023-06-19 17:57:47
1880
原创 R语言从入门到精通Day1之【R语言介绍】
如今,大数据科学不再是高高地挂在神坛之上,已经广泛应用到我们的生活中的任何一个角落在之中,大到国民经济发展、航空航天等领域,小到居民出行、购物等方面,我们置身在大数据的海洋之中,感受大数据给生活带来的便利。如果你不知道什么是R,什么是数据科学,可以看以下的介绍。R语言是一种为统计计算和绘图而生的免费软件环境,它是一套开源的数据分析解决方案,由一个庞大的全球性研究型社区来维护。目前市面上也不少的统计分析和绘图软件,比如,SPSS、SAS、Stata和Excel,我们为什么要选择学习R语言呢?...
2022-08-21 18:34:17
1239
2
原创 R语言 地理加权随机森林(GWRFC )
随机森林可以产生高准确度的分类器,被广泛用于解决模式识别问题。然而,随机森林赋予每个决策树相同的权重,这在一定程度上降低了整个分类器的性能。该算法引入二次训练过程,提高分类正确率高目前,鲜有中文文章介绍GWRFC的技术文档,作者想使用该方法时会遇到重重困难,因此有必要利用R来建模,通过流程演示,供读者参阅。............
2022-08-04 18:56:47
6125
16
原创 R语言实现空间对象可视化--以郑州市为例
空间数据处理与分析过程中,一个主要的特点就是对空间对象进行可视化,制作精美的地图图件,本节介绍了空间可视化方法。 函数包maptools中提供了函数pointLabel、mapscale和north.arrow,分别用于在图件中添加文字标注、比例尺和指南针,以下代码可在之前图件中添加对应制图元素...
2022-07-02 11:43:36
403
原创 伦敦市空间数据可视化
空间数据处理与分析过程中,一个主要的特点就是对空间对象进行可视化,制作精美的地图图件,本节介绍了空间可视化方法。 加载包和数据空间数据可视化 #example library(maptools) require(rgeos) LN.bou <- readShapePoly("LondonBorough",verbose = T,proj4string = CRS("+init=epsg:27700")) 通过制作一个单独的伦敦市行政边界,与原有的LondonBrough数据进行
2022-02-06 10:36:26
399
1
原创 R语言模糊匹配
模糊匹配是指根据名词中字符的相似特征,将两个相似的名词进行匹配,以获取另一个表中对应名词的属性数据。相同名词之间的匹配可以参考以前的一篇文章(利用R解决常见的数据匹配问题),但是现实中,由于数据来源不同,同一对象所表达的名称不同,但两个名称之间仍有一定的相似性,本文利用分词、投票的原理,将两个表格中相似程度最高的两个名词进行匹配。...
2020-11-13 11:10:36
4828
1
原创 地理加权回归R语言实例
目录数据准备加载需要的R包导入空间数据空间自相关分析空间邻域面数据空间邻域点数据空间邻域全局空间自相关局部空间自相关空间回归分析线性回归分析地理加权回归经典的线性回归模型是建立在最小二乘法 (OLS模型) 基础上对参数进行“平均”或“全局”估计。如果自变量为空间数据,且自变量间存在空间自相关性,传统回归模型(OLS模型)残差项独立的假设将无法满足。地理加权回归(GWR)模型能够反映参数在不同空间的空间非平稳性,使变量间的关系可以随空间位置的变化而变化,其结果更符合客观实际,能反映局部情况。杨晴青,刘倩
2020-08-12 11:33:01
8441
17
原创 利用R通过顺企网根据公司名称爬取企业地址
利用R通过顺企网根据公司名称爬取企业地址有时我们有公司名称数据但是没有地址,需要根据公司名称找出企业的地址,描述其空间布局,如果数据量很大,手动在网页中操作费时费力,R语言提供了一个解决的办法,前提是该网站能够与机器交互(即没有反爬机制,或者有但限制较小)。其过程如下1. 首先读取数据并作简单处理打开顺企网检索某个公司发现其链接是以下形式,其特征是字符串+“公司名称”构成了一个完整的链接因此可以对每个公司名称构建url地址,然后根据url地址获取页面信息#library packeges&g
2020-08-03 19:20:02
4126
7
原创 泊松回归R语言实例
泊松回归当通过一系列连续型和/或类别型变量来预测计数型结果变量时,泊松回归是一个非常有用的工具。泊松回归(Poisson regression)是用来为计数资料和列联表建模的一种回归分析。泊松回归假设反应变量Y是泊松分布,并假设它期望值的对数可被未知参数的线性组合建模。泊松回归模型有时(特别是当用作列联表模型时)又被称作对数-线性模型。该模型在地理学中被广泛应用,如Wu、张华和贺灿飞运用泊松模型分别研究了外资企业在广州和北京城市内部区位选择。以下文献列举了泊松回归在地理学中的应用:[1] Wu F.
2020-07-29 21:37:33
6705
4
原创 R语言Logist回归
Logist回归Logistic回归又称Logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。当通过一系列连续型和/或类别型预测变量来预测二值结果型变量时,Logistic回归是一个非常有用的工具。研究数据该数据集为AER包中的Affairs数据集,通过翻译可以发现该数据为“婚外情数据”,取自于1969年《今日心理》所做的一个非常有代表性的调查,变量名称解释如下:affairs:一年以来婚外私通的频率gender: 性别age:年龄yearsm
2020-07-14 17:15:11
2239
1
原创 利用R语言OLS回归分析
回归分析是统计学的核心问题,通常用来用一个或多个解释变量来预测相应变量,有效的回归是一个交互的、整体的、多步骤的过程,而不仅仅是一个技巧OLS回归为了能够恰当地解释OLS模型的系数,数据必须妈祖以下假设: 正态性,即对于固定的自变量值,因变量值呈正态分布 独立性,因变量值之间相互独立 线性, 因变量与自变量之间线性相关 同方差性,因变量的方差不随自变量的水平不同而变化如果违背上述假设,统计检验结果或所得的置信区间很可能就不精确了简单线性回归数据准备提取鸢尾花数据中的山鸢尾数据作为本
2020-06-28 10:19:14
5780
1
原创 随机森林_R代码及用法
随机森林(Random Forests)简介Nilsson在1965年提出:由多位专家组合而成,按一些特定的方式(如投票法,权重法)整合各位专家的意见进行决策,其得到的结果会比只有单个专家的效果更好。由于每位专家的擅长之处不同,因此通过组合的机制可以让专家之间彼此互补,得到更好的结果。随机森林(Random Forests)属于套袋法的一种,是基于决策树所建立的,结合多个决策树的预测结果,而每棵树都是根据随机森林的随机向量的值所建立的。随机森林在影响因素探讨上,现有研究表明,随机森林不需要估计一般回归
2020-06-20 16:33:39
8303
7
原创 利用R处理复杂表格1
复杂表格处理之多个表格数据提取至一个表格有时我们会遇到这样的数据(如下图),即一个Excel表格中镶嵌了多个表格,需要提取其中的部分指标,如果数据量非常大,R提供了便捷的解决方案,代码如下:> #设置工作空间> setwd("F:\\affair")> #读取数据> shandong <- read.csv("山东省.csv")> #加载dolyr函数包,利用此包过滤数据> library(dplyr)> #查看数据> head(sh
2020-06-06 09:54:10
793
1
原创 利用R解决常见的数据匹配问题
数据匹配问题有时我们需要将两个表之间根据某个字段的名称进行匹配,如果数据量达到万级单位,R提供了高效的解决方案,下面以成绩表作为示例> ###数据匹配问题> #创建成绩表> name <- c("张三","李四","王五","小明","张华","李然","马涛","魏然")> chinese <- c(88,55,56,89,58,65,75,56)> english <- c(89,48,57,78,29,68,89,64)> cj_da
2020-06-03 10:16:15
1978
6
原创 R_文字识别(OCR)
本文介绍利用tesseract包对文字进行识别当有大批量的图片文字需要转换成文字时,该方法提供了高效的解决方案,不仅支持中英文图片识别,还支持pdf版本识别,是不是功能很强大,话不多说,直接写代码吧:install.packages("tesseract") #安装包library(tesseract)library(askpass) #与tesseract包结合支持PDF文字识别setwd("E:\\R_study\\文字识别") #设置工作空间 #添加中文识别数据库tesseract_d
2020-05-18 10:07:39
8924
5
原创 R爬虫常用的包与用法
1. xml2用于解析xml报表(parse XML)使用简单、一致的接口处理XML文件。构建在’libxml2’ C库之上。xml2包是到libxml2的绑定,这使得使用r中的HTML和XML很容易。这个API多少受到了jQuery的启发。Usage如下:library("xml2")x <- read_xml("<foo> <bar> text <baz/> </bar> </foo>")xxml_name(x)xml_c
2020-05-17 16:33:17
1185
3
原创 Pearson相关系数R代码实现
Pearson相关系数(Pearson Correlation Coefficient)Pearson’s r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度。要理解皮尔逊相关系数,首先要理解协方差(Covariance)。协方差可以反映两个随机变量之间的关系,如果一个变量跟随着另一个变量一起变大或者变小,那么这两个变量的协方差就是正值,就表示这两个变量之间呈正相关关系,反之相反。如果协方差的值是个很大的正数,我们可以得到两
2020-05-14 20:34:11
16333
1
原创 R语言基础(数据类型,运算符,数据整理,管道操作)
基础数据类型R语言中的数据类型包括逻辑型(logical)、数值型(numeric)、整数型(integer)、字符型(character)、复数型(complex)和原始类型(raw)。结构体对象数据类型R的结构数据类型包括向量、列表、二维矩阵、三维矩阵、因子和数据框,其创建方式和元素访问代码如下表:类别创建方式元素访问向量(vector)c( )v[index...
2020-04-10 21:45:23
1172
5
原创 R软件的下载与更新
R学习开篇本人一枚地理学在读研究生,一次偶然的机会接触R,便对R产生了浓烈的兴趣,学习R有半载时间,但并非专业人才,没有形成系统的学习,一些代码总是学了又忘,忘了又学。平常看CSDN博主大神的文章也学了不少知识,俗话说好记性不如烂笔头,CSDN是个很好的平台,便萌生出将自己的学习整理成笔记,便于自己将来复习之用,当然如果你刚接触R,咱们可以共同学习,也欢迎各大神的批评指正。R简介R语言主要...
2020-04-09 17:28:45
1404
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅