随机森林_R代码及用法

本文介绍了随机森林的基本原理,强调了其在处理复杂数据时的优势,并通过鸢尾花数据集展示了如何在R中运用随机森林进行分类、预测和变量重要性评估,最后得出模型预测准确率为95.83%。
摘要由CSDN通过智能技术生成

随机森林(Random Forests)简介

Nilsson在1965年提出:由多位专家组合而成,按一些特定的方式(如投票法,权重法)整合各位专家的意见进行决策,其得到的结果会比只有单个专家的效果更好。由于每位专家的擅长之处不同,因此通过组合的机制可以让专家之间彼此互补,得到更好的结果。
随机森林(Random Forests)属于套袋法的一种,是基于决策树所建立的,结合多个决策树的预测结果,而每棵树都是根据随机森林的随机向量的值所建立的。
随机森林在影响因素探讨上,现有研究表明,随机森林不需要估计一般回归分析面临的多元共线性的问题,不需要做变量选择,便于计算变量的非线性作用,而且可以评估自变量的重要性。

张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用: 以云南松分布模拟为例. 生态学报, 2014, 34(3): 650-659.

随机森林的估计过程
1)指定m值,即随机产生m个变量用于节点上的二叉树,二叉树变量的选择仍然满足节点不纯度最小原则;
2)应用Bootstrap自助法在原数据集中有放回地随机抽取k个样本集,组成k棵决

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小火柴123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值