非比较排序——计数排序和基数排序

计数排序

(适用于要排序的数的范围不大时)  ,以数组中的数据为key值,得到它们出现的次数,

 然后根据它们出现的次数进行重新排列,得到它们的有序数列。相当于哈希表的直接定址法。


代码实现:
//计数排序
void Countsort(int *a,size_t n)
{
assert(a);
int max = a[0];
int min = a[0];
for (int i = 0; i < n; i++)
{
if (a[i]>max)
{
max = a[i];
}
else if (a[i] < min)
{
min = a[i];
}
}
int len = max - min + 1;
int *B = new int[len];
memset(B, 0, sizeof(int)*len);
for (int i = 0; i < n; i++)
{
B[a[i] - min]++;
}
int tmp = 0;
for (int i = 0; i < len; i++)
{
while (B[i]--)
{
a[tmp++] = i + min;
}
}
}
void Count_test()
{
int a[8] = { 2, 5, 3, 0, 2, 3, 0, 3 };
cout << "排序前:" << endl;
for (int i = 0; i < 8; i++)
cout << a[i] << " ";
cout << endl;
Countsort(a, 8);
cout << "排序后:" << endl;
for (int i = 0; i < 8; i++)
cout << a[i] << " ";
cout << endl;
}
代码运行结果:


当输入的元素是 n 个 0 到 k 之间的整数时,它的时间复杂度是 O(n + k)。
空间复杂度O(k)
稳定度较好,排序速度快于比较排序算法。


基数排序


代码实现:
#pragma once
#include<iostream>
#include<math.h>
using namespace std;
int GetMaxDigit(int *a, size_t n)//最大有多少位
{
int digit = 1;//位数
int max = 10;
for (int i = 0; i < n; i++)
{
if (a[i] >= max)
{
digit++;
max *= 10;
}
}
return digit;
}
//LSD基数排序
void LSDSort(int *a, size_t n)
{
int maxdigit = GetMaxDigit(a, n);
int bucket[10][10] = { 0 };
int count[10] = { 0 };
int digit = 1;
int bit = 1;
while (digit <= maxdigit)
{
//个位,十位处理
for (int i = 0; i < n; i++)
{
int num = (a[i] /bit) % 10;
bucket[num][count[num]] = a[i];
count[num]++;
}
//重新排序
int k = 0;
for (int i = 0; i < n; i++)
{
if (count[i] != 0)
{
for (int j = 0; j < count[i]; j++, k++)
{
a[k] = bucket[i][j];
}
count[i] = 0;
}
}
digit++;
bit *= 10;
}
}
void LSDtest()
{
int a[10] = { 73, 22, 93, 43, 55, 14, 28, 65, 39, 81 };
cout << "排序前:" << endl;
for (int i = 0; i < 10; i++)
cout << a[i] << " ";
cout << endl;
LSDSort(a, 10);
cout << "排序后:" << endl;
for (int i = 0; i < 10; i++)
cout << a[i] << " ";
cout << endl;
}

#define _CRT_SECURE_NO_WARNINGS 1


#include"insort.h"
#include<stdlib.h>
int main()
{
LSDtest();
system("pause");
return 0;
}
代码运行结果:

基数排序的时间复杂度是 O(k·n),其中n是排序元素个数,k是数字位数。
空间复杂度O(n)
稳定度好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值