使用Mahout搭建推荐系统之入门篇2-玩转你的数据1


用意: 搞推荐系统或者数据挖掘的, 对数据要绝对的敏感和熟悉, 并且热爱你的数据. 分析数据既要用统计分析那一套,又要熟悉业务发掘有趣的特征(feature). 后者有意思的多,但是因为我业务做的不多,还不太熟悉, 跪求大牛们分析业务经历. 听豆瓣上的大神"懒惰啊我"说过,有一个Nokia的比赛,有一个团队直接用陀螺仪参数就发现了性别分布,因为男生手机都放在口袋里, 而女生往往放在包里面. 不知道记错没有.

下面主要讲些统计分析或者简单的内容分析, 说说我自己的总结, 这个话题以后可以常说.

这部分不涉及Mahout的内容,主要是使用Python和Linux命令简单处理数据. 不感兴趣的朋友可以直接跳到最后面看看一些不错的数据集推荐. 

一. 前期数据分析的三个阶段

1. 打开你的数据,读懂每一行的含义

2. 统计你的数据, 用python\excel pivot table\R\SPSS等都可以, 考虑到复用性建议写代码

    数据的行数

    item和user的数量

    rate的评分方式,是boolean还是1-5分或者其它.

    数据稀疏还是稠密 sparse or dense

3. 找到合适的存储方式存储,DenseVector还是SparseVector

二. 数据分析实例

   现在国内的数据还比较少, 感谢下百度,提供了一些不错的数据.

    首先来看一份国内的数据

    百度举办的电影推荐系统算法创新大赛提供的用户数据. http://pan.baidu.com/s/1y15w4

1. 读懂你的数据, 知道每一行的含义.

一共有五个文件:

movie_tag.txt 每行表示一个有效数据项, 下面类似. 每行由电影id以及tag的id, 用"\t"隔开; tag用","隔开.

training_set.txt  每行表示用户id, 电影id, 评分, 用"\t"隔开.

user_social.txt  每行表示用户id和用户关注的好友id集合; 好友id集合用","隔开.

predict.txt 每行表示用户id和电影id

user_history.txt 每行表示用户id和用户看过的电影id. 

数据如下图所示: head -n 2 *.txt


2. 数据统计
主要参数:
    用户个数\电影个数
    每个用户平均电影个数,平均值,标准差\每个电影平均用户个数,平均值,标准差
    评分的范围

行数分析: wc -l *.txt


traning_set.txt数量为1262741行,predict.txt数量为314679行, 电影和用户数量未知,大概在万的级别,所以写些
python代码简单分析一下. 100万用户级别的数据项使用python dict数据结构消耗内存在MByte级别且由于Python使用共享池共享int类,对象的冗余开销也不会暴涨, 普通PC既可以计算.

Python数据分析

Python代码输出如下:

     用户(总数,平均值,标准差)=( 9722 129.884900226 223.778624272 )
     电影(总数,平均值,标准差)=( 7889 160.063506148 360.171047305 )
     评分范围=( 1.0 5.0 )

简要分析:

    由数据可见,用户数量和电影数量在10000左右级别, 由于电影更少一些,使用item-based较合适;当然,由于用户和电影数量差距不大,最终还是要用实验来证明一下两者的性能优异.

    另外:两者标准差分别为223与336可见, 基本可以判定数据为稀疏矩阵.

[比较: 我使用了movieLens上的1M数据集进行对比, 运行结果如下]

http://www.grouplens.org/datasets/movielens/

用户(总数,平均值,标准差)=( 6040 165.597516556 192.731072529 )
电影(总数,平均值,标准差)=( 3706 269.889098759 383.996019743 )
评分范围=( 1.0 5.0 )

    评价: 平均值更大, 数据更加致密一些. 每个用户和电影的数据推荐效果应该也会更好一些.

[吐槽点: 你给了id不给电影和标签的真实名称,看着一堆id, 推荐一大堆数字有个毛兴趣啊.  但是movieLens给出了电影名称,以后还是使用movieLens来作为预测数据更加有兴趣一些.]

Python代码如下:

# -*- coding: utf-8 -*- 
'''
Created on 2 Nov, 2013

@author: cool
'''
import math

#return user_num, movie_num, movie_mean, movie_variant
def countData(filename):
    user_count = {} #the number of movie about every user
    movie_count = {} #the number of user about every movie
    max = -100
    min = 100
    
    #Assuming no duplicate data
    for line in open(filename):
        (user, movie, rating) = line.split("\t")
        #(user, movie, rating, xx) = line.split("::")
        rating = float(rating.replace(r"\r\r\n", ""))
        #print rating
        
        user_count.setdefault(user, 0)
        user_count[user] += 1
        
        movie_count.setdefault(movie, 0)
        movie_count[movie] += 1
        
        if (max < rating): max = rating
        if (min > rating): min = rating 
        
    uSum = sum([user_count[user] for user in user_count])
    uSqSum = sum([user_count[user]**2 for user in user_count])
    user_mean = float(uSum) / len(user_count)
    user_variant = math.sqrt(float(uSqSum) / len(user_count) - user_mean**2) 
    
    
    mSum = sum([movie_count[movie] for movie in movie_count])
    mSqSum = sum([movie_count[movie]**2 for movie in movie_count])
    movie_mean = float(mSum) / len(movie_count)
    movie_variant = math.sqrt(float(mSqSum) / len(movie_count) - movie_mean**2)
    
    return len(user_count), len(movie_count), user_mean, user_variant, movie_mean, movie_variant, min, max

if __name__ == '__main__':
    (user_count, movie_count, user_mean, user_variant, movie_mean, movie_variant, min, max) \
     = countData("../data/baidu/training_set.txt")
    
    #(user_count, movie_count, user_mean, user_variant, movie_mean, movie_variant, min, max) \
    # = countData("../data/baidu/ratings.dat")
     
    print "用户(总数,平均值,标准差)=(", user_count, user_mean, user_variant, ")" 
    print "电影(总数,平均值,标准差)=(", movie_count, movie_mean, movie_variant, ")"
    print "评分范围=(", min, max, ")" 

三. 不错的数据来源

[1] GroupLens数据集(推荐相关:电影数据\书\笑话等): http://grouplens.org/datasets/
[2] UCI数据集(数据丰富,无所不包) http://archive.ics.uci.edu/ml/index.html
[3] Kaggle数据(数据丰富,规范,KDD2012是腾讯提供的微博数据) http://www.kddcup2012.org/c/kddcup2012-track1
[4] Scikit-learn 提供的一些Python数据库,可以教你怎么玩转数据,我自己只玩过一点,以后得深挖一下. 此外这个Python机器学习库的文档堪称天人所写  http://scikit-learn.org/stable/datasets/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值