推荐系统
贪睡的游侠
非科班出身,浅尝过机器学习,后毕业做了两年后台业务开发,厌倦了重拾机器学习中~~勉励自己
展开
-
使用Mahout搭建推荐系统之入门篇2-玩转你的数据1
用意: 搞推荐系统或者数据挖掘的, 对数据要绝对的敏感和熟悉, 并且热爱你的数据. 分析数据既要用统计分析那一套,又要熟悉业务发掘有趣的特征(feature). 后者有意思的多,但是因为我业务做的不多,还不太熟悉, 跪求大牛们分析业务经历. 听豆瓣上的大神"懒惰啊我"说过,有一个Nokia的比赛,有一个团队直接用陀螺仪参数就发现了性别分布,因为男生手机都放在口袋里, 而女生往往放在包里面. 不知道原创 2013-11-03 10:25:56 · 2121 阅读 · 0 评论 -
使用Mahout搭建推荐系统之入门篇1-搭建REST风格简单推荐系统
用意: 网络上有很多关于使用mahout搭建推荐系统的文章,但是还没有一个从建立推荐系统原型至部署到简单服务器的完整教程. 虽然部分朋友对推荐系统很感兴趣, 但是因hadoop的复杂而却步. 同时对于那些没有任何Web开发经验的朋友来说, 一个完整的小型推荐系统可以很大的激发学习的兴趣和动手的冲动. 我觉得动手的冲动比看书的冲动要重要的多.原创 2013-11-03 10:16:58 · 2636 阅读 · 3 评论 -
使用Mahout搭建推荐系统之入门篇3-Mahout源码初探
用意: 希望了解Mahout中数据的存储方式, 它如何避免java object带来的冗余开销。学完知识,要进行些实战 去分析数据。 花了些时间看了看Mahout的源码和官方资料,记录下自己的一些收获。 一、Mahout内容补充 1. Mahout本质上是一个开源的机器学习框架. http://mloss.org/software/ 有大量的机器学习开源框架, mahou原创 2013-11-07 16:44:32 · 4426 阅读 · 9 评论 -
使用Mahout搭建推荐系统之入门篇4-Mahout实战
用意: 结合上篇博客,写写代码熟悉一下Mahout。很多地方想法都比较粗糙,亟待指正。 代码放在了:https://github.com/xiaoqiangkx/qingRS 一、基本内容 1. 加载数据: 判断userID和itemID的大小关系 2. 过滤数据: 评分较少的用户直接过滤掉, 那些评分均一致且评分数量多的用户过滤掉. 计算过滤百分比, 如果过滤过多原创 2013-11-07 17:21:10 · 5134 阅读 · 4 评论