大禹智库
大禹智库——河南第一民间智库,致力于钧共体,文旅融合,数字化转型和AI智能体应用四大领域
展开
-
《向量数据库指南》——RAG质量评估与监控,打造高效AI引擎
比如Arise啊,它就是一个非常流行的RAG评估和监控工具,提供了丰富的评估指标和可视化工具来支持咱们对RAG系统的评估和监控工作。这些工具啊,都有各自的特点和优势哦!它不仅提供了评估答案质量指标的工具,比如忠实度、相关性和上下文精确度这些关键指标,还支持生成合成测试数据集、监控生产中的RAG应用程序,以及与各种AI工具和平台(比如LangChain和LlamaIndex)的集成。它们就像是咱们RAG系统的贴身小助手,提供了各种评估和监控所需的指标和工具,让咱们能够定量地测量、监控和排错咱们的RAG系统。原创 2024-11-02 20:00:00 · 64 阅读 · 0 评论 -
《向量数据库指南》揭秘:LlamaIndex如何助力RAG应用开发
还有Haystack啊,它也是一个非常强大的RAG应用框架,提供了丰富的组件和工具来支持RAG应用的开发和管理。最后啊,当咱们需要查询或生成答案时,LlamaIndex就会根据用户的查询意图和上下文信息,在索引中检索最相关的信息,并将其发送到LLM中进行生成。但是呢,RAG应用的工作流程可是相当复杂的,需要咱们进行精心的编排和优化,才能确保它能够高效地运行并产生最佳的结果。嘿,各位小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是那本被大家誉为行业宝典的《向量数据库指南》的作者。原创 2024-11-02 20:00:00 · 16 阅读 · 0 评论 -
《向量数据库指南》——解锁RAG新境界,让AI“能说会道”
而更高级的生产级RAG系统呢,还会包括一些额外的组件,比如数据挖掘、知识图谱构建等等,来进一步增强系统的质量和用户体验。在索引阶段啊,咱们的主要任务就是把各种来源的数据给“洗白白”,也就是进行数据清洗,把那些没用的、乱码的数据给剔除掉。这样一来啊,当咱们需要检索数据的时候,就可以通过计算向量之间的相似性来找到最相关的信息了。此外啊,还有一些项目从不同的角度来探索RAG的发展呢!嘿,各位小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是那本被大家誉为行业宝典的《向量数据库指南》的作者。原创 2024-11-02 09:00:00 · 35 阅读 · 0 评论 -
《向量数据库指南》——解锁GenAI生态系统新纪元
首先啊,我得说,《向量数据库指南》这本书啊,那真的是向量数据库领域的宝典啊!举个例子啊,假设你要写一篇关于某个话题的文章啊,但是你又不知道该从哪里入手啊,这时候你就可以用RAG啊。你想想看啊,以前要制作一个创意广告啊,那得需要多少人啊、多少时间啊、多少成本啊!那么啊,说了这么多啊,你可能要问了啊:“王帅旭啊,那你觉得未来GenAI生态系统会怎么发展啊?相信我,它绝对不会让你失望的啊!所以啊,朋友们啊,如果你们想要在这个充满机遇和挑战的时代里脱颖而出啊,那就一定要好好学习和掌握向量数据库技术啊!原创 2024-11-01 20:00:00 · 77 阅读 · 0 评论 -
《向量数据库指南》——Mlivus Cloud:性能卓越,AI应用首选
而且啊,它的分布式架构还支持水平扩展,也就是说,当数据量增加时,我们只需要增加更多的节点就可以了,无需对现有的系统进行大规模的改造和升级。第一个场景啊,就是图像检索。哈喽,各位朋友们,我是你们的老朋友,大禹智库的向量数据库高级研究员王帅旭,也是那本备受好评的《向量数据库指南》的作者。今天,咱们来聊聊向量数据库领域的一个明星产品——Mlivus Cloud,看看它凭啥能在众多向量数据库中脱颖而出,成为AI应用的理想选择。最后啊,我想说的是啊,在这个数据爆炸的时代啊,选择一个好的向量数据库真的是太重要了!原创 2024-11-01 09:00:00 · 34 阅读 · 0 评论 -
Milvus: 轻松实现高效的向量相似性搜索
让我们利用 Cohere Embedding 技术进行相似性搜索。我们会将Who founded Wikipedia转换为 Embedding 向量,并用这个问题的向量在 Milvus 数据库中进行检索。原创 2024-10-30 09:00:00 · 35 阅读 · 0 评论 -
《向量数据库指南》——Milvus Cloud 过滤功能:轻松驾驭大规模数据搜索
减少搜索空间:与其他一些解决方案(例如 pgvector)不同,Milvus Cloud 在运行向量相似性搜索之前就进行元数据过滤,极大地减少了需要处理的向量数量。标量索引(可选):对于那些经常需要过滤的字段,Milvus Cloud 支持您为其创建标量索引。返回的文档标题中既不包含 "British Arab Commercial Bank",也不包含 "Calectasia"。在处理数百万或数十亿的向量时,过滤功能就不仅仅是一个锦上添花的功能——它是必不可少的功能。搜索包含特定词汇的文档。原创 2024-10-29 20:00:00 · 411 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何快速上手 Milvus,实现高效向量搜索
本章节将介绍如何快速上手使用 Milvus,包括安装 Milvus SDK 或设置 Zilliz Cloud、连接至 Milvus、创建 Collection 等。原创 2024-10-29 09:00:00 · 80 阅读 · 0 评论 -
《向量数据库指南》——解锁Wikipedia文章向量的跨语言搜索秘籍
不过啊,对于咱们今天的用例来说,咱们主要关注的是英语文章,也就是其中的 4150 万个向量。比如啊,在《向量数据库指南》里啊,我就介绍了好几种常用的索引算法和它们的优缺点呢!没错,它就是通过 Cohere Embedding 模型将维基百科(Wikipedia)的文章转换成的 Embedding 向量,而且啊,这个数据集还能在 HuggingFace 上免费获取呢!嘿,各位向量数据库和AI应用的小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是《向量数据库指南》的作者。原创 2024-10-28 20:00:00 · 173 阅读 · 0 评论 -
解锁NLP新境界!《向量数据库指南》带你深入ext-embedding-ada-002
不过啊,虽然ext-embedding-ada-002模型非常优秀啊,但是啊,随着技术的不断进步和发展啊,它也逐渐被一些新的模型所取代了呢。最后啊,我想说的是啊,向量数据库和NLP任务啊,都是非常有前途和发展潜力的领域呢。这个模型啊,在OpenAI Embedding家族中可是个佼佼者,它以平衡之道处理广泛的NLP任务,为向量数据库领域留下了浓墨重彩的一笔。所以啊,咱们在学习和使用ext-embedding-ada-002模型时啊,一定要保持开放的心态和求知的欲望哦。好了啊,今天的分享就到这里了啊。原创 2024-10-24 20:00:00 · 18 阅读 · 0 评论 -
《向量数据库指南》——text-embedding-3-small:性能与效率的双重飞跃
而且啊,由于text-embedding-3-small模型的性能非常出色,所以它在处理这些任务时,能够快速地给出结果,大大提高了咱们的工作效率。毕竟啊,谁也不想自己的模型跑得慢、效果差,还占用了大量的计算资源和内存,对吧?它的输出向量维度为1,536维,虽然比一些更高维度的模型要低一些,但是啊,它完全能够在保证效果的前提下,实现更高的性能和资源效率。所以啊,如果你想要用好text-embedding-3-small模型哦,想要让你的项目和应用更加高效、准确哦,那么就一定不要错过我的《向量数据库指南》哦。原创 2024-10-24 09:00:00 · 40 阅读 · 0 评论 -
《向量数据库指南》揭秘:为何Milvus Cloud是非结构化数据的最佳拍档?
只需要计算向量之间的相似度,就能找到最匹配的结果。传统的关系型数据库,它们擅长处理的是那种规规矩矩的表格数据,面对这些高维度的非结构化数据,可就有点力不从心了。比如,在智能客服系统中,我们可以通过向量数据库来检索与用户问题相似的历史问答记录,从而提供更加准确和高效的回答。比如,在安防监控系统中,我们可以通过向量数据库来检索出与嫌疑人相似的图像,为警方提供更加准确的线索和证据。:现在的向量数据库产品,比如Mlivus Cloud,都提供了友好的用户界面和丰富的API接口,使得开发者能够更加方便地使用和集成。原创 2024-10-18 20:00:00 · 27 阅读 · 0 评论 -
《向量数据库指南》揭秘:Agentic RAG如何重塑RAG系统未来?
比如,在医疗保健领域,我们可以利用Agentic RAG系统来快速检索和分析医学文献和病例数据,为医生提供更加准确和个性化的诊疗建议。RAG系统需要能够根据当前的任务和需求,选择合适的检索策略和算法,从海量的数据中快速找到最有用的信息。Mlivus Cloud支持高效的向量索引和查询操作,能够帮助RAG系统快速定位到与查询向量最相似的数据点,从而大幅提升信息检索的效率和准确性。这样一来,RAG系统就能够根据当前的任务和环境,主动检索、分析和处理信息,从而生成更加准确和有用的回答或文本。原创 2024-10-18 09:00:00 · 52 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何超越Naive RAG,打造高效智能系统
比如,在医疗保健领域,医生可以利用RAG系统快速获取最新的医学研究成果和临床指南,从而做出更准确的诊断和治疗决策。这个模块应该能够对检索到的信息进行深入的分析和处理,提取出有用的信息和特征。这样,在面对复杂任务时,RAG系统就能够更好地理解和分析检索到的信息,从而给出更准确的答案。代理方法的核心思想是将RAG系统看作一个具有自主行动能力的智能体(Agent),它能够根据当前的任务和环境来主动检索、分析和处理信息。在未来的工作中,我们可以尝试将这种方法应用到更多的场景中,不断提升AI系统的智能性和实用性。原创 2024-10-17 20:00:00 · 28 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何超越Naive RAG,打造高效智能系统
比如,在医疗保健领域,医生可以利用RAG系统快速获取最新的医学研究成果和临床指南,从而做出更准确的诊断和治疗决策。这个模块应该能够对检索到的信息进行深入的分析和处理,提取出有用的信息和特征。这样,在面对复杂任务时,RAG系统就能够更好地理解和分析检索到的信息,从而给出更准确的答案。代理方法的核心思想是将RAG系统看作一个具有自主行动能力的智能体(Agent),它能够根据当前的任务和环境来主动检索、分析和处理信息。在未来的工作中,我们可以尝试将这种方法应用到更多的场景中,不断提升AI系统的智能性和实用性。原创 2024-10-17 20:00:00 · 28 阅读 · 0 评论 -
《向量数据库指南》基于Milvus Cloud构建Agentic RAG复杂任务AI智能体
然后,我们定义两个agent tool,他们分别是vector query tool 和summary tool。整合vector query tool 和summary tool,以及React的特性,反思,路由以及使用工具能力,实现Agentic RAG。输出的答案,从答案来看,不仅详细列举了Milvus 2.3 和Milvus 2.4各种功能特性,还有功能总结与对比。这是对于上述问题的思考过程,包括React的观察,思考,行动具体步骤。最后,通过LlamaIndex的。分段之后,导入到Milvus。原创 2024-10-17 09:00:00 · 45 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何打造智能灵活的RAG系统?
同时,我们还需要设计一个高效的子查询执行和结果合并算法,以确保系统能够准确地处理每个子查询,并将结果合并为一个完整的答案。这样,你的系统就能更准确地回答用户的问题了。Agentic RAG,简单来说,就是在Naive RAG的基础上,加入了代理方法,使其能够更智能、更灵活地处理各种复杂问题。举个例子,如果系统在处理一个查询时出现了错误,它就可以通过反思功能来分析错误的原因,并尝试调整自己的处理策略。举个例子,如果用户查询的是关于天气的信息,你就可以将查询路由到专门处理天气信息的RAG管道上。原创 2024-10-16 20:00:00 · 27 阅读 · 0 评论 -
《向量数据库指南》深度解读:Naive RAG的五大“先天不足”
比如,你让它给你讲述一个连续的故事,并在对话过程中不断提问和补充信息,它可能只能根据你的当前问题给出一些零散的回答,而无法形成一个完整、连贯的故事线。比如,你让它给你讲述一个公司的历史发展脉络,并分析其中的关键节点,它可能只能给出一些零散的、不连贯的信息,而无法形成一个完整、有条理的故事线。比如,你让它给你生成一篇关于向量数据库的文章,并给出了一些修改意见,它可能只能根据你的意见进行一些简单的修改,而无法从根本上提升自己的生成能力和质量。这些局限性,说白了,就是Naive RAG的几个“先天不足”。原创 2024-10-16 09:00:00 · 25 阅读 · 0 评论 -
《向量数据库指南》——Naive RAG的复杂问题困境
比如,“告诉我文章A中的支持X的论点,再告诉我文章B中支持Y的论点,按照我们的内部风格指南制作一个表格,然后基于这些事实生成你自己的结论”。比如,“告诉我美国表现最好的网约车公司的风险因素”,这个问题不仅要求模型能够准确理解语义,还要求它能够在复杂的语义搜索和结构化分析中表现出色。今天,咱们就来聊聊Naive RAG(Retrieval-Augmented Generation,检索增强生成)方法的那些事儿,特别是它在处理复杂问题时的局限性。特别是在面对更复杂的问题时,它的短板就逐渐暴露出来了。原创 2024-10-15 20:00:00 · 56 阅读 · 0 评论 -
《向量数据库指南》——解锁Mlivus Cloud数据加载与检索全攻略
哈哈,各位向量数据库的小伙伴们,大家好!我是你们的老朋友,大禹智库的向量数据库高级研究员王帅旭,也是那本畅销行业内外的《向量数据库指南》的作者。今天,咱们来聊聊如何将数据加载到 Mlivus Cloud 中,并进行一系列高效的操作。准备好了吗?那就让我们一起进入向量数据库的奇妙世界吧!原创 2024-10-15 09:00:00 · 713 阅读 · 0 评论 -
【无标题】
今天,作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者王帅旭,我将为大家详细介绍Llama-agents、Ollama、Mistral Nemo以及Mlivus Cloud Lite这四个强大的工具,并探讨它们如何携手打造高效AI应用。随着AI技术的不断发展和应用领域的不断扩大,构建高效、灵活且易于扩展的AI应用已经成为了我们面临的一大挑战。对于开发者们来说,Ollama和Mistral Nemo的结合使用不仅降低了AI应用的开发门槛,还提高了应用的可用性和安全性。原创 2024-10-15 08:00:00 · 40 阅读 · 0 评论 -
《向量数据库指南》揭秘:Mlivus Cloud赋能Llama-agents,重塑Agent系统未来!
作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深知向量数据库在构建智能Agent系统中的关键作用。这本书不仅详细阐述了向量数据库的原理和应用,还提供了大量实战案例,是想要深入了解向量数据库的读者的不二之选。在接下来的内容中,我将结合我的实战经验,探讨如何使用Llama-agents和Mlivus Cloud构建智能且高效、可扩展的复杂Agent系统,并巧妙引导大家如何通过《向量数据库指南》获得更多干货和深度实战技巧。这个模型规模更大,能够处理更复杂的指令和更广泛的任务。原创 2024-10-14 20:00:00 · 293 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何借助Mlivus Cloud多副本功能突破QPS瓶颈?
而 Mlivus Cloud 的多副本功能,就像是在高速公路上增加了多条并行车道,通过在多个 Replica 之间分配查询负载,轻松解决了 QPS 瓶颈问题,实现了并行处理。当然啦,我也要提醒大家一句,多副本功能虽然强大,但它并不会增加集群的整体容量。首先,得说说我那本《向量数据库指南》,这本书可是凝聚了我30多年的向量数据库和AI应用实战经验,里面的干货满满,深度实战案例应有尽有。哈哈,大家好,我是王帅旭,大禹智库的向量数据库高级研究员,也是那本畅销行业书籍《向量数据库指南》的作者。原创 2024-10-14 09:00:00 · 508 阅读 · 0 评论 -
《向量数据库指南》——知识图谱×向量数据库:解锁RAG效果飙升的秘籍
如图,向量召回到了两个红色的 entities,只需要从它们开始,相向扩展 2 度,就能覆盖到 4 度的跳数,这足以回答涉及到这两个 entities 的 4 跳问题。对于输入的 Query,我们遵循常见的 GraphRAG 中的范式(如HippoRAG,MS GraphRAG),将 query 提取 entities,对于每个 query entity,转换成 embedding,分别对 entity collection 进行 vector similarity search。原创 2024-10-13 20:00:00 · 76 阅读 · 0 评论 -
《向量数据库指南》——构建高效知识图谱检索系统的实战策略
在当今大数据与人工智能蓬勃发展的时代,知识图谱作为连接信息孤岛、挖掘数据深层价值的桥梁,其重要性日益凸显。然而,如何高效地从庞大的知识图谱中检索出与用户查询最相关的信息,成为了制约知识图谱应用的一大瓶颈。本文将围绕一种创新的检索方法,结合Mlivus Cloud向量数据库的强大功能,详细阐述如何在RAG(Retrieval-Augmented Generation)流程中优化passages检索阶段,实现知识图谱的高效检索。原创 2024-10-13 09:00:00 · 78 阅读 · 0 评论 -
《向量数据库指南》 ——KG-RAG 新突破:有限跳数假设下的高效解法
而 vector retrieval + LLM rerank 才是这个 pipeline 中最关键的部分,这也就解释了我们只用一个传统的两路召回架构,就可以达到远超基于图理论的方法(如 HippoRAG) 的表现。这也说明了,实际上不需要复杂的图算法,我们只需要将图结构的逻辑关系存储在向量数据库里,用一个传统的架构就可以进行逻辑上的子图路由,而现代 LLM 强大的能力帮助做到了这一点。基于这两点观察,我们发现,有限次数的在知识图谱内的路由查找过程,只涉及到局部的知识图谱信息。查找“诺贝尔奖”获奖年份。原创 2024-10-12 20:00:00 · 102 阅读 · 0 评论 -
《向量数据库指南》——解锁Chinese CLIP的向量存储与检索奥秘
通过本文的介绍,我们深入了解了Chinese CLIP模型与Mlivus Cloud在跨模态检索领域的结合应用。作为向量数据库领域的专家,我深知向量数据库在AI应用中的重要性。如果你希望深入了解向量数据库的原理、应用以及实战技巧,那么《向量数据库指南》将是你不可多得的学习资源。本书不仅涵盖了向量数据库的基本概念。原创 2024-10-10 20:00:00 · 75 阅读 · 0 评论 -
《向量数据库指南》深度解读:CLIP模型架构与Mlivus Cloud的向量数据库应用实践
通过将用户发布的图片和文本内容转换为向量表示,并存储到Mlivus Cloud中,我们就可以根据用户的兴趣和行为习惯,为他们推送感兴趣的内容。CLIP模型,作为OpenAI推出的一款强大的多模态模型,其独特的架构和卓越的性能,使其在图像和文本数据的处理上展现出了巨大的优势。接下来,让我们一同走进CLIP模型的世界,看看它是如何通过视觉编码器和文本编码器,将图像和文本数据转换为向量表示,并实现在向量空间中的高效比较。在这个空间中,相似的图像和文本对之间的距离较近,而不相似的对之间的距离较远。原创 2024-10-10 09:00:00 · 154 阅读 · 0 评论 -
《向量数据库指南》深度解析:CLIP模型与Mlivus Cloud在多模态搜索中的强强联合
作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深知多模态搜索的重要性,并在此领域积累了丰富的实战经验。这两个编码器分别将图像和文本映射到一个共同的嵌入空间中,使得在这个空间中,相似的图像和文本对之间的距离较近,而不相似的对之间的距离较远。与图像搜索文本相反,文本搜索图像的应用场景是用户通过输入一段文本描述,来搜索与之相关的图像信息。当我们需要进行多模态搜索时,只需将查询的图像或文本转换为向量表示,并在Mlivus Cloud中进行搜索,即可快速找到与之相似的图像或文本结果。原创 2024-10-09 20:00:00 · 78 阅读 · 0 评论 -
《向量数据库指南》——Mlivus Cloud:重塑向量数据库的性能与可扩展性新标杆
当然,如果你想要更深入地了解向量数据库的原理和实现方法,以及Mlivus Cloud的更多细节和技巧,那么《向量数据库指南》绝对是你的不二之选。《向量数据库指南》作为行业内的畅销书,不仅系统地介绍了向量数据库的基本概念、发展历程,还深入剖析了各类向量数据库的优缺点,为读者提供了宝贵的选型建议。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感有责任为大家深入剖析这款卓越的向量数据库,带领大家一同探索其背后的奥秘。在向量数据库中,性能是衡量其优劣的关键指标之一。原创 2024-10-09 12:17:50 · 123 阅读 · 0 评论 -
《向量数据库指南》——Fivetran+Mlivus Cloud:打造AI搜索神器
想象一下,当你想要查找某个特定话题的 Slack 消息时,只需要输入几个关键词,Mlivus Cloud 就能迅速地从海量的数据中找出与你需求最匹配的消息,是不是超级方便呢?这就意味着,无论你的数据源是哪种类型,Fivetran 都能帮你轻松搞定,让你的数据迁移工作变得前所未有的简单和高效。哈哈,各位向量数据库和 AI 应用的同仁们,今天咱们来聊聊一个超级实用的话题——如何借助 Fivetran 和 Mlivus Cloud 构建 AI 驱动的搜索工具,从非结构化数据中挖掘出无尽的宝藏!原创 2024-10-08 09:00:00 · 53 阅读 · 0 评论 -
《向量数据库指南》揭秘:Mlivus Cloud如何借Fivetran Partner SDK实现数据飞跃
Mlivus Cloud 的原厂 Zilliz(这里我们用 Mlivus Cloud 代替哈)可是个技术实力派,他们通过将 Mlivus Cloud 的向量数据库操作紧密映射到 Fivetran 的关系型更新模型,成功地构建了与 Fivetran 的集成。这样一来,数据迁移和集成就变得前所未有的简单和高效。哈哈,各位向量数据库领域的同仁们,今天咱们来聊聊 Fivetran 的 Partner SDK 如何助力技术供应商构建自定义连接器和目标,特别是与 Mlivus Cloud 的集成,这可是个热门话题啊!原创 2024-10-07 18:00:25 · 125 阅读 · 0 评论 -
《向量数据库指南》揭秘:如何借助Milvus与Fivetran构建高效AI搜索
Fivetran 是一款强大的数据迁移工具,它支持 Milvus 向量数据库作为数据迁移的目标,极大地简化了将任何来源的数据 Ingest 到 Milvus 的流程。Fivetran 允许你在 Ingest 数据时,保留结构化数据列,从而在搜索过程中实现元数据过滤,提高搜索的准确性和效率。哈哈,各位向量数据库领域的同仁们,今天咱们来聊聊 Milvus 和 Fivetran 如何携手为 AI 构建坚实的基础,以及在这个过程中,我们大禹智库的《向量数据库指南》能如何助你一臂之力!原创 2024-10-07 17:51:18 · 826 阅读 · 0 评论 -
仅两家!云原生向量数据库 PieCloudVector 全项通过信通院「可信数据库」评测
据信通院公布:“历史所有参测产品的测评结果显示,‘备份与恢复’、‘数据生命周期’、‘计算异构的向量索引’、‘数据加密’、‘多模态数据向量化能力’是通过率最低的测试项目。基于向量压缩(Product Quantization,PQ)技术对多种类型的原始向量数据(包括图片、视频、音频、文本和矩阵等)进行存储和压缩以减小存储空间的占用,实现了在处理大规模数据集的同时可以更有效地管理内存,并加快相似性搜索和最近邻搜索的速度。至今,所有参加信通院向量数据库测评的产品中,向量数据库测评项目通过情况。原创 2024-07-26 15:00:00 · 57 阅读 · 0 评论 -
《Milvus Cloud向量数据库指南》——云启AI,数领未来|Zilliz 华北地区高层闭门会圆满结束
他通过讲述AWS在搭建端到端AI应用的多个实际案例,包括客户服务、智能运营、视频VQA等场景,展示了生成式AI在提升企业效率和创新能力方面的巨大潜力,也体现了AWS在搭建端到端AI应用的成熟经验。Zilliz推出的全球领先的开源向量数据库Milvus 以其高性能、易用性和高质量的社区支持,成为业界广泛采用的解决方案,为推荐系统、文本/语义搜索、图像/视频相似性搜索等提供了强大的支持,同时还通过检索增强生成(RAG)等技术,扩展了大型语言模型(LM)的知识库,支持了广泛的实际部署案例,获得了行业高度认可。原创 2024-07-25 16:00:00 · 128 阅读 · 0 评论 -
《Milvus Cloud向量数据库指南》——“AI赋能搜索新纪元:Spark、Databricks与Zilliz Cloud的融合创新“
在当今这个数据爆炸的时代,人工智能(AI)与深度学习(Deep Learning)技术的飞速发展正以前所未有的方式重塑着我们对信息的处理、理解和应用。特别是,通过神经网络模型将复杂多样的非结构化数据转化为高维空间中的Embedding向量,已成为实现高效语义检索、精准推荐及智能决策等AI业务场景的核心技术之一。这种转变不仅极大地提升了数据处理的速度与精度,还为用户提供了更加个性化、智能化的体验。原创 2024-07-31 11:00:00 · 105 阅读 · 0 评论 -
《Milvus Cloud向量数据库指南》——AI加速引擎:Apache Spark & Databricks携手Milvus与Zilliz Cloud,重塑数据处理与搜索新纪元
在当今快速发展的数字化时代,数据已成为企业最宝贵的资源之一。随着人工智能(AI)技术的不断进步,如何高效地处理、管理和利用这些数据,以驱动创新并提升业务价值,成为了众多企业和开发者关注的焦点。Apache Spark 和 Databricks 作为大数据处理领域的佼佼者,与专注于向量相似度搜索的 Milvus Cloud,以及其全托管服务 Zilliz Cloud 的整合,无疑为 AI 应用开发带来了前所未有的便利与效率。原创 2024-07-31 09:00:00 · 102 阅读 · 0 评论 -
《Milvus Cloud向量数据库指南》——如何使用Spark Connector
如果您使用的是全托管 Milvus Cloud 服务——Zilliz Cloud,您可以使用 Zilliz Cloud 提供的数据导入 API。Zilliz Cloud 提供多样的工具和完整的文档,从而帮助您将各种来源(如 Spark)的数据高效导入 Zilliz Cloud 中。使用 Spark Connector,您可以直接利用 Apache Spark 中 Dataframe 的 write API 将数据以增量方式插入到 Milvus Cloud 中,大幅降低数据插入流程的实现成本。原创 2024-07-30 20:00:00 · 454 阅读 · 0 评论 -
《Milvus Cloud向量数据库》——Spark Connector 工作原理及使用场景
然而,在处理完这些数据并生成向量后,如何高效地存储、索引并支持在线服务中的高效查询,成为了一个新的挑战。例如,在生成式 AI 中,用户可以使用 Apache Spark 或 Databricks 进行数据预处理和模型训练,然后使用 Spark Connector 将生成的向量导入到 Milvus cloud 或 Zilliz Cloud 中,以供在线服务使用。这一设计极大地简化了数据推送流程,用户无需再编写额外的代码,只需通过简单的函数调用,即可实现数据的无缝传输。原创 2024-07-30 09:00:00 · 518 阅读 · 0 评论 -
《Milvus Cloud向量数据库指南》——领航未来搜索:Learned稀疏向量技术的创新之旅与变革展望
在深入探讨Embedding向量的广阔领域时,我们仿佛踏上了一场穿越复杂信息空间的壮丽旅程,这场旅行不仅揭示了传统向量表示方法的局限性,更引领我们迈向了由Learned稀疏向量引领的创新前沿。在这一过程中,我们不仅见证了技术的飞跃,更深刻理解了这些新兴技术如何重塑搜索与查询系统的面貌,为构建更加直观、高效且智能的信息交互平台奠定了坚实的基础。原创 2024-07-23 17:00:00 · 118 阅读 · 0 评论