算法
No Knownledge
One more thing
展开
-
DTW(动态时间规整)算法原理与应用
算法;时序数据处理;DTW原创 2024-04-08 20:22:05 · 324 阅读 · 0 评论 -
Pymoo Framework
单/多目标优化算法;启发式算法原创 2024-03-14 15:31:47 · 242 阅读 · 0 评论 -
最长非递减子序列
一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度。(讲DP基本都会讲到的一个问题LIS:longest increasing subsequence)正如上面我们讲的,面对这样一个问题,我们首先要定义一个“状态”来代表它的子问题,并且找到它的解。注意,大部分情况下,某个状态只与它前面出现的状态有关,而独立于后面的状态。让我们沿用“入门”一节里那道简单题的思路来一转载 2017-04-27 22:08:04 · 1818 阅读 · 1 评论 -
换11元钱问题,动态规划问题
2013-06-01 adkada 文章来源动态规划:从新手到专家March 26, 2013 作者:Hawstein出处:http://hawstein.com/posts/dp-novice-to-advanced.html声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-N转载 2017-04-27 14:36:12 · 434 阅读 · 0 评论 -
prim算法
prim算法的思想:初始化时,v0加入到最小树,其他所有顶点作为未加入树的集合取矩阵中第一横,lowcost[],其实就是v0与其他顶点的距离,找出最小的,比如v4,v4加入到最小树,此时最小数有两个节点了v0和v4接下来,要找到其他未加入树顶点中与最小树顶点距离最近的那个点lowcost[]这是v0的数据找到v4与其他顶点的距离数据,即矩阵的第5横 tmp[]然后rmp[转载 2017-05-11 10:55:59 · 261 阅读 · 0 评论 -
利用贪心算法求解tsp问题
一、TSP问题TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。二、贪心算法贪心算法,总是做出在当前看来最好的选择,它所做的每一个在转载 2017-05-15 19:31:45 · 12474 阅读 · 0 评论 -
最大流问题的Ford-Fulkerson解法
这是一种方法,而不是算法,因为它包含具有不同运行时间的几种实现。该方法依赖于三种重要思想:残留网络,增广路径和割我们先简单介绍下Ford-Fulkerson方法的基本思想。首先需要了解的是Ford-Fulkerson是一种迭代的方法。开始时,对所有的u,v属于V,f(u,v)=0(这里f(u,v)代表u到v的边当前流量),即初始状态时流的值为0。在每次迭代中,可以通过寻找一个“增广路径”来增加转载 2017-05-16 16:50:28 · 521 阅读 · 0 评论 -
Dijkstra(迪杰斯特拉)算法
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。求最短路径步骤 算法步骤如下: 1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值 若存在,d(V0,Vi)为弧上的权值 若不存在,d(V0,Vi)为∝ 2. 从T中选取一个转载 2017-05-10 14:16:05 · 818 阅读 · 0 评论