做数据库有一段时间了。最近有一些在校的同学问到,在实际中,分布式数据库中存储层工作内容是什么样的?简单回答了下,想到其他人可能也有类似问题,于是来这里总结下、抛个砖头。经验所限,难免有误,欢迎交流。
注:限定下讨论范围,分布式数据库,存储计算分离,share-noting 架构,仅讨论存储层。
存储层涉及的东西很庞杂,想说清楚,需要有一个合适的切入角度。数据库最本质的功能,是存储数据,以对外提供数据的查询和写入接口。不妨,就首先以这两条线串一下各个模块,然后再补充下不能归到这两条线中的一些组件。
作者:木鸟杂记 https://www.qtmuniao.com/2022/05/04/distributed-database-storage-components 转载请注明出处
查询
查询请求进到存储层,一般表现为下推的执行计划,进而转化为对底层存储引擎的单点查询和范围查询,为了加速查询,一般会给存储引擎配备缓存层。对于每个存储节点来说,为了应对大量的并发请求,需要做 IO 优化。
执行计划
这是存储层的入口,是存储层向查询层暴露的接口。
一个查询语句经过查询层的语法分析(Parser)、语义检查(Validator)、生成计划(Planner)、计划优化(Optimizer)、执行计划(Executor)几个步骤之后,会将需要下推给存储层的算子下发到存储层对应的分片( Partition)所在节点。
对于火山模型来说,我们可以将执行计划理解为一个由基本算子(Executor)组成的 DAG,甚至再简化一些可以想象成一棵树。树中下层的一些小子树,是可以直接推到存储层对应的节点去执行的,这些可以下推的算子通常包括:TableScan,Filter,Project,Limit,TopN 等等。
存储层拿到这些执行计划后,反序列化,组织成内存中的执行计划,以迭代模型[1]或者向量模型,来对数据进行扫描、过滤、排序、投影、聚合等操作后,将结果集返回给查询层。
结果集可以有几种返回方式:
-
一次全量返回
-
流式返回
-
分页返回
计算下推有诸多好处:
-
充分利用存储层的分布式节点进行预计算。
-
减少存储层到查询层的数据传输带宽消耗。