暗影精灵5 (i7 9750H + RTX2060) 安装win10+Ubuntu18.04双系统

HP暗影精灵5Air双系统安装Ubuntu18.04教程
本文详细介绍如何在HP暗影精灵5Air笔记本上安装Ubuntu18.04系统,并解决安装过程中的常见问题,包括禁用ACPI、配置bootloader、添加开机启动项等。同时,还提供了安装RTX2060显卡驱动、卸载高版本内核、安装CUDA10.0和CuDNN7.6.3的具体步骤。
部署运行你感兴趣的模型镜像
  • 电脑型号:hp 暗影精灵5 Air
  • 显卡:RTX 2060
  • CPU:i7-9750H
  • 硬盘:500G固态
  • 安装的启动方式:UEFI

这个电脑比较新,安装时有很多坑。

建议使用18.04.3版本的镜像,本人一开始使用18.04.2安装失败了,安装时除了acpi的貌似还有其他问题

下面是操作步骤:
首先在win10系统中对硬盘进行分区,分出未分配空间用于安装Ubuntu系统。
对这款电脑来说,若按照网上常见的方法进行安装,最后会报boot loader安装不上的错误,于是参考了这个网页的方法:

禁用acpi

安装时光标在try ubuntu选项上按e,进入编辑界面,对于Linux开头的这一行,在splash后面添加acpi=off,按f10进入系统

安装系统

此时会进入一个图形界面,输入命令开始安装

sudo ubiquity -b

这个命令会启动安装程序,但并不会安装boot loader
我安装时只设置了根("/")分区,没有设置EFI分区,因为win10已经有一个EFI分区,他们俩可以都用这一个
安装程序结束后选择继续试用

配置boot loader

将刚刚安装系统的分区挂载到/mnt

sudo mount /dev/nvme0n1p6 /mnt
sudo mkdir /mnt/boot/efi
sudo mount /dev/nvme0n1p1 /mnt/boot/efi
for i in /dev /dev/pts /proc /sys; do sudo mount -B $i /mnt$i; done

以上/dev/nvme0n1p6是根分区,/dev/nvme0n1p1是EFI分区
加载efivars模块:

sudo modprobe efivars

重新下载64位的grub-install:

sudo apt-get install --reinstall grub-efi-amd64-signed
sudo grub-install --no-nvram --root-directory=/mnt

将根设置为/mnt并更新Grub:

sudo chroot /mnt
update-grub

移动和重命名下载的boot loader:

cd /boot/efi/EFI
cp -R ubuntu/* BOOT/
cd BOOT
cp grubx64.efi bootx64.efi

启动时加入acpi=off配置:

sudo nano /etc/default/grub

找到GRUB_CMDLINE_LINUX_DEFAULT所在行,在里面加入acpi=off
更新Grub:

update-grub

重启系统。

添加开机启动项

若系统中无Ubuntu的启动引导,则需要通过easyUEFI添加启动引导项。
重启时拔下安装所使用的U盘,按Esc会进入hp的功能选择界面,选择配置启动项,会看到目前的系统的启动项,若里面只有Windows Boot Manager说明Ubuntu的启动项没有安装进去,选择下面的从EFI文件启动,在里面选择EFI/ubuntu/grubx.efi,按回车即进入Ubuntu系统。
之前配置的Grub没有识别到Windows系统,这次再次打开终端执行命令,即可将Window的启动项加入到Ubuntu的启动引导中。

sudo update-grub

此时重启再选择从EFI文件启动就会进入紫色的grub引导界面,windows启动在第三个。
为了以后启动ubuntu不需要每次都选择EFI文件,需要在Windows系统中通过EasyUEFI添加启动项。
按图中圈出的按钮进行添加
点进去后类型选择“Linux或其他操作系统”,目标分区选择EFI分区,文件路径配置为“\EFI\ubuntu\grubx64.efi”,如下图
创建启动项
“确定”后重启系统,即会进入ubuntu’的grub引导。

安装显卡驱动

首先将启动配置里的“acpi=off”那一项去掉,以保证安装好驱动后可以正常进入系统。

sudo nano /etc/default/grub

找到GRUB_CMDLINE_LINUX_DEFAULT所在行,删除里面的acpi=off
更新Grub:

sudo update-grub

下面开始安装RTX2060的显卡驱动:
首先添加源:

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update

打开软件中心的“Software & Updates”中“Additional Drivers”选项卡,里面会列出nvidia显卡的几个适配驱动,选择里面的nvidia-driver-430,单击“Apply Changes”,等待驱动安装完毕,大概需要几分钟。没有选择列出的435驱动是因为这个驱动安装后不太稳定。
驱动装好后重启电脑。
重启电脑后在Grub引导界面选择Advanced Options for Ubuntu,里面应该会出现一个4.15.0的内核,选择这个内核进入系统,5.0.0内核配合430驱动在这台电脑上不太稳定,经常不能正常启动,而4.15.0这个内核是安装驱动时自动安装上的,和驱动的兼容性较好。
进入系统后分辨率正常,电池电量显示正常,也可以调节亮度了。

卸载高版本内核

从4.15.0内核进入系统,查看当前系统已安装的内核:

dpkg -l | grep linux-image

卸载内核:

sudo apt purge linux-image-5.0.0-27-generic
sudo apt purge linux-image-5.0.0-23-generic
sudo apt purge linux-headers-5.0.0-27-generic
sudo apt purge linux-headers-5.0.0-23-generic
sudo apt purge linux-image-5.0.0-27
sudo apt purge linux-image-5.0.0-23
sudo apt purge linux-headers-5.0.0-27
sudo apt purge linux-headers-5.0.0-23
sudo update-initramfs -d -k 5.0.0-27-generic
sudo update-initramfs -d -k 5.0.0-23-generic
sudo update-initramfs -u
sudo apt remove linux-image-unsigned-5.0.0-27-generic
sudo apt remove linux-image-unsigned-5.0.0-23-generic 
sudo update-grub

更新grub

sudo update-grub

再次重启就可以直接从4.15.0内核进入系统了

安装cuda10.0

安装依赖库:

sudo apt install freeglut3-dev libx11-dev libxi-dev libxmu-dev libglu1-mesa-dev

在这个网址进行下载cuda10.0下载,选择Linux-x86_64-Ubuntu-18.04-runfile(local),点击下面的Download进行下载,若下载的很慢,可以右击Download按钮复制链接地址,使用wget下载,wget好像会快一些。
在这里插入图片描述

wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
sudo sh cuda_10.0.130_410.48_linux

安装显卡驱动时,要NO,其他都是YES或者default
在~/.bashrc中添加:

export PATH=/usr/local/cuda/bin:${PATH}

将cuda库文件加入库目录:

sudo sh -c "echo /usr/local/cuda/lib64 > /etc/ld.so.conf.d/cuda.conf"
sudo ldconfig

测试:

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery
nvcc --version

卸载cuda可使用/usr/local/cuda-10.0/bin目录下的卸载程序。

安装cudnn7.6.3

网址https://developer.nvidia.com/rdp/cudnn-download
选择7.6.3 for CUDA 10.0
下载cuDNN Library for Linux

tar -xzvf cudnn-10.0-linux-x64-v7.6.3.30.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

动态文件进行链接:

cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7  #删除原有动态文件
sudo ln -s libcudnn.so.7.6.3 libcudnn.so.7  #生成软衔接
sudo ln -s libcudnn.so.7 libcudnn.so     #生成软链接
sudo ldconfig 

测试:
在下载页面下载:
cuDNN Runtime Library for Ubuntu18.04 (Deb)
cuDNN Developer Library for Ubuntu18.04 (Deb)
cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)

sudo dpkg -i libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb

运行minist示例程序:

cp -r /usr/src/cudnn_samples_v7/ $HOME
cd  $HOME/cudnn_samples_v7/mnistCUDNN
make clean && make
./mnistCUDNN

若显示Test passed!则说明cudnn已经成功安装。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 运行环境 #### 硬件环境 - **CPU**:建议使用多核处理器,如 Intel Core i7 及以上系列,以提供足够的计算能力处理图像和视频数据。 - **GPU**:如果有条件,使用 NVIDIA GPU 可以显著加速模型的推理过程。推荐 NVIDIA GeForce RTX 2080 Ti 或更高性能的显卡,并安装对应的 CUDA 和 cuDNN 库。 - **内存**:至少 16GB 内存,以确保系统能够流畅运行,处理大量的图像和视频数据。 #### 软件环境 - **操作系统**:推荐使用 Ubuntu 18.04 或更高版本的 Linux 系统,也可以使用 Windows 10 操作系统。 - **Python**:Python 3.7 或更高版本,因为 YOLOv5 和 DeepSORT 的代码通常基于较新的 Python 特性开发。 - **深度学习框架**:PyTorch 1.7 或更高版本,YOLOv5 是基于 PyTorch 实现的,需要安装与之兼容的版本。 - **其他依赖库**:OpenCV、NumPy、SciPy 等,这些库用于图像处理、数值计算和科学计算。 ### 运行步骤 #### 1. 克隆代码仓库 首先,从 GitHub 上克隆 YOLOv5 和 DeepSORT 结合的代码仓库。可以使用以下命令: ```bash git clone https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch.git cd Yolov5_DeepSort_Pytorch ``` #### 2. 创建并激活虚拟环境 为了避免不同项目之间的依赖冲突,建议创建一个虚拟环境。可以使用 `venv` 或 `conda` 来创建虚拟环境。以下是使用 `venv` 的示例: ```bash python3 -m venv yolov5_deepsort_env source yolov5_deepsort_env/bin/activate ``` #### 3. 安装依赖库 在激活的虚拟环境中,安装项目所需的依赖库。可以使用以下命令: ```bash pip install -r requirements.txt ``` #### 4. 下载预训练模型 YOLOv5 提供了多个预训练模型,如 `yolov5s.pt`、`yolov5m.pt` 等。可以从 YOLOv5 的官方 GitHub 仓库下载预训练模型,并将其放置在 `weights` 目录下。 ```bash wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt -P weights ``` #### 5. 运行代码 运行代码进行行人车辆管理系统的测试。可以使用以下命令: ```bash python track.py --source path/to/your/video.mp4 --yolo_weights weights/yolov5s.pt --classes 0 2 3 5 7 ``` 其中,`--source` 指定输入视频的路径,`--yolo_weights` 指定 YOLOv5 预训练模型的路径,`--classes` 指定要检测的目标类别,0 表示行人,2 表示汽车,3 表示摩托车,5 表示公交车,7 表示卡车。 #### 6. 结果查看 运行代码后,系统会在 `runs/track` 目录下生成检测和跟踪结果的视频文件,可以使用视频播放器查看结果。
评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值