/**************************************************************************************
用数组栈解决迷宫问题
1. 在maze[][]二维数组中,0表示通道,1表示墙壁
2. 在FootPrints[][]二维数组中,{-1,-1}表示未经过,非{-1,-1}表示经过的点
整体思路如下:
将起点标记为已走过并压栈;
while (栈非空)
{
从栈顶弹出一个点p;
if (p这个点是终点)
{
break;
}
否则沿下、右、上、左四个方向探索相邻的点
if (和p相邻的点有路可走,并且还没走过)
{
将相邻的点标记为已走过并压栈,且记录它的前趋点-->p点坐标;
}
}
if (p点是终点)
{
打印p点的坐标;
while (p点有前趋)
{
p点 = p点的前趋;
打印p点的坐标;
}
}
else
{
没有路线可以到达终点;
}
***************************************************************************************/
#include <stdio.h>
#define MAX_ROW 8
#define MAX_COL 8
typedef struct point
{
int row;
int col;
}Point;
int maze[MAX_ROW][MAX_COL] = {
0, 1, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 0, 1,
1, 0, 1, 0, 0, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0,
};
Point FootPrints[MAX_ROW][MAX_COL] = {
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
};
Point stack[MAX_ROW * MAX_COL];
unsigned int top = 0;
int StackFull(void)
{
return top == MAX_ROW * MAX_COL;
}
int StackEmpty(void)
{
return top == 0;
}
void Push(Point p)
{
if(! StackFull())
{
stack[top++] = p;
}
else
{
printf("stack is full ! \n");
}
}
Point Pop(void)
{
if(! StackEmpty())
{
return stack[--top];
}
else
{
printf("stack is empty ! \n");
}
}
void VisitedPoint(int row, int col, Point p)/*记录访问过的点,入栈并且记录上一个点的坐标*/
{
Point tempPoint;
tempPoint.row = row;
tempPoint.col = col;
maze[row][col] = 2;/*访问过的点符合要求则标记为2,且入栈*/
Push(tempPoint);
FootPrints[row][col].row = p.row;/*记录上一个点的坐标*/
FootPrints[row][col].col = p.col;
//FootPrints[row][col] = p;
}
void Print_Maze(void)
{
int i = 0, j = 0;
for(i = 0; i < MAX_ROW; i++)
{
for(j = 0; j < MAX_COL; j++)
{
printf("%2d", maze[i][j]);
}
printf("\n");
}
printf("\n***************************************** \n");
}
void Print_Foots(Point p)
{
printf("{%d, %d} \n", p.row, p.col);
while(FootPrints[p.row][p.col].row != -1)/*FootPrints[p.row][p.col]记录p点的上一个点的坐标*/
{
p = FootPrints[p.row][p.col];
printf("{%d, %d} \n", p.row, p.col);/*倒序打印走出 迷宫的每一个点坐标*/
}
printf("seccess out ! \n");
}
int main(void)
{
Point p = {0, 0};/*出发点*/
maze[p.row][p.col] = 2;/*访问过的点标记为2*/
Push(p);/*把出发入栈*/
while(! StackEmpty())
{
p = Pop();/*出栈,找当前点的下一个可访问点*/
if((p.row+1 == MAX_ROW) && (p.col+1 == MAX_COL))/*找到出口马上退出*/
{
printf("it's go out ! \n");
break;
}
if((p.row+1 < MAX_ROW) && (maze[p.row+1][p.col] == 0))
{
VisitedPoint(p.row+1, p.col, p);
}
if((p.col+1 < MAX_COL) && (maze[p.row][p.col+1] == 0))
{
VisitedPoint(p.row, p.col+1, p);
}
if((p.row-1 >= 0) && (maze[p.row-1][p.col] == 0))
{
VisitedPoint(p.row-1, p.col, p);
}
if((p.col-1 >= 0) && (maze[p.row][p.col-1] == 0))
{
VisitedPoint(p.row, p.col-1, p);
}
Print_Maze();/*打印迷宫*/
}
if((p.row+1 == MAX_ROW) && (p.col+1 == MAX_COL))
{
Print_Foots(p);/*打印成功走出迷宫的路径*/
}
else
{
printf("No Path ! \n");
}
return 0;
用数组栈解决迷宫问题
1. 在maze[][]二维数组中,0表示通道,1表示墙壁
2. 在FootPrints[][]二维数组中,{-1,-1}表示未经过,非{-1,-1}表示经过的点
整体思路如下:
将起点标记为已走过并压栈;
while (栈非空)
{
从栈顶弹出一个点p;
if (p这个点是终点)
{
break;
}
否则沿下、右、上、左四个方向探索相邻的点
if (和p相邻的点有路可走,并且还没走过)
{
将相邻的点标记为已走过并压栈,且记录它的前趋点-->p点坐标;
}
}
if (p点是终点)
{
打印p点的坐标;
while (p点有前趋)
{
p点 = p点的前趋;
打印p点的坐标;
}
}
else
{
没有路线可以到达终点;
}
***************************************************************************************/
#include <stdio.h>
#define MAX_ROW 8
#define MAX_COL 8
typedef struct point
{
int row;
int col;
}Point;
int maze[MAX_ROW][MAX_COL] = {
0, 1, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 0, 1,
1, 0, 1, 0, 0, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0,
};
Point FootPrints[MAX_ROW][MAX_COL] = {
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
{{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
};
Point stack[MAX_ROW * MAX_COL];
unsigned int top = 0;
int StackFull(void)
{
return top == MAX_ROW * MAX_COL;
}
int StackEmpty(void)
{
return top == 0;
}
void Push(Point p)
{
if(! StackFull())
{
stack[top++] = p;
}
else
{
printf("stack is full ! \n");
}
}
Point Pop(void)
{
if(! StackEmpty())
{
return stack[--top];
}
else
{
printf("stack is empty ! \n");
}
}
void VisitedPoint(int row, int col, Point p)/*记录访问过的点,入栈并且记录上一个点的坐标*/
{
Point tempPoint;
tempPoint.row = row;
tempPoint.col = col;
maze[row][col] = 2;/*访问过的点符合要求则标记为2,且入栈*/
Push(tempPoint);
FootPrints[row][col].row = p.row;/*记录上一个点的坐标*/
FootPrints[row][col].col = p.col;
//FootPrints[row][col] = p;
}
void Print_Maze(void)
{
int i = 0, j = 0;
for(i = 0; i < MAX_ROW; i++)
{
for(j = 0; j < MAX_COL; j++)
{
printf("%2d", maze[i][j]);
}
printf("\n");
}
printf("\n***************************************** \n");
}
void Print_Foots(Point p)
{
printf("{%d, %d} \n", p.row, p.col);
while(FootPrints[p.row][p.col].row != -1)/*FootPrints[p.row][p.col]记录p点的上一个点的坐标*/
{
p = FootPrints[p.row][p.col];
printf("{%d, %d} \n", p.row, p.col);/*倒序打印走出 迷宫的每一个点坐标*/
}
printf("seccess out ! \n");
}
int main(void)
{
Point p = {0, 0};/*出发点*/
maze[p.row][p.col] = 2;/*访问过的点标记为2*/
Push(p);/*把出发入栈*/
while(! StackEmpty())
{
p = Pop();/*出栈,找当前点的下一个可访问点*/
if((p.row+1 == MAX_ROW) && (p.col+1 == MAX_COL))/*找到出口马上退出*/
{
printf("it's go out ! \n");
break;
}
if((p.row+1 < MAX_ROW) && (maze[p.row+1][p.col] == 0))
{
VisitedPoint(p.row+1, p.col, p);
}
if((p.col+1 < MAX_COL) && (maze[p.row][p.col+1] == 0))
{
VisitedPoint(p.row, p.col+1, p);
}
if((p.row-1 >= 0) && (maze[p.row-1][p.col] == 0))
{
VisitedPoint(p.row-1, p.col, p);
}
if((p.col-1 >= 0) && (maze[p.row][p.col-1] == 0))
{
VisitedPoint(p.row, p.col-1, p);
}
Print_Maze();/*打印迷宫*/
}
if((p.row+1 == MAX_ROW) && (p.col+1 == MAX_COL))
{
Print_Foots(p);/*打印成功走出迷宫的路径*/
}
else
{
printf("No Path ! \n");
}
return 0;
}
/**************************************************************************
打印结果可以看出这种搜索算法的特点是:每次探索完各个方向相邻的点之后,
取其中一个相邻的点走下去,一直走到无路可走了再退回来,取另一个相邻的点
再走下去。这称为深度优先搜索(DFS,Depth First Search)。
*******************************************************************/