1.商品实体POJO
1.1 SPU与SKU概念
SPU = Standard Product Unit (标准产品单位)
概念 : SPU 是商品信息聚合的最小单位,是一组可复用、易检索的标准化信息的集合,该集合描述了一个产品的特性。
通俗点讲,属性值、特性相同的货品就可以称为一个 SPU
同款商品的公共属性抽取
例如:华为P30 就是一个 SPU
SKU=stock keeping unit( 库存量单位)
SKU 即库存进出计量的单位, 可以是以件、盒、托盘等为单位。
SKU 是物理上不可分割的最小存货单元。在使用时要根据不同业态,不同管理模式来处理。
在服装、鞋类商品中使用最多最普遍。
例如:华为P30 红色 64G 就是一个 SKU
public class Goods implements Serializable {
//SPU
private Spu spu;
//SKU集合
private List<Sku> skuList;
//..get..set..toString
}
2.测试的json数据
{
"spu": {
"name": "这个是商品名称",
"caption": "这个是副标题",
"brandId": 12,
"category1Id": 558,
"category2Id": 559,
"category3Id": 560,
"freightId": 10,
"image": "http://www.qingcheng.com/image/1.jpg",
"images": "http://www.qingcheng.com/image/1.jpg,http://www.qingcheng.com/image/2.jpg",
"introduction": "这个是商品详情,html代码",
"paraItems": {
"出厂年份": "2019",
"赠品": "充电器"
},
"saleService": "七天包退,闪电退货",
"sn": "020102331",
"specItems": {
"颜色": [
"红",
"绿"
],
"机身内存": [
"64G",
"8G"
]
},
"templateId": 42
},
"skuList": [
{
"sn": "10192010292",
"num": 100,
"alertNum": 20,
"price": 900000,
"spec": {
"颜色": "红",
"机身内存": "64G"
},
"image": "http://www.qingcheng.com/image/1.jpg",
"images": "http://www.qingcheng.com/image/1.jpg,http://www.qingcheng.com/image/2.jpg",
"status": "1",
"weight": 130
},
{
"sn": "10192010293",
"num": 100,
"alertNum": 20,
"price": 600000,
"spec": {
"颜色": "绿",
"机身内存": "8G"
},
"image": "http://www.qingcheng.com/image/1.jpg",
"images": "http://www.qingcheng.com/image/1.jpg,http://www.qingcheng.com/image/2.jpg",
"status": "1",
"weight": 130
}
]
}
3.ID生成使用IdWorker
3.1 添加工具类
package com.changgou.util;
import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;
/**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L;
private final long workerId;
// 数据标识id部分
private final long datacenterId;
public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
return nextId;
}
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
/**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}
/**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
public static void main(String[] args) {
IdWorker idWorker=new IdWorker(0,0);
for(int i=0;i<10000;i++){
long nextId = idWorker.nextId();
System.out.println(nextId);
}
}
}
3.2 在启动类添加如下代码,交给spring容器管理
@Bean
public IdWorker idWorker(){
return new IdWorker(0,0);
}
也可以在启动类加上初始值设置:
@Value("${workerId}")
private Integer workerId;
@Value("${datacenterId}")
private Integer datacenterId;
@Value值来自application.yml
3.3 使用
idWorker.nextId()
4.商品添加
public void saveGoods(Goods goods) {
//增加Spu
Spu spu = goods.getSpu();
spu.setId(String.valueOf(idWorker.nextId()));
spuMapper.insertSelective(spu);
//增加Sku
Date date = new Date();
Category category = categoryMapper.selectByPrimaryKey(spu.getCategory3Id());
Brand brand = brandMapper.selectByPrimaryKey(spu.getBrandId());
//获取Sku集合
List<Sku> skuList = goods.getSkuList();
for (Sku sku : skuList) {
//构建SKU名称,采用SPU+规格值组装
if(StringUtil.isNullOrEmpty(sku.getSpec()))
{
sku.setSpec("{}");
}
//获取Spu的名字
String name = spu.getName();
//将规格转换成Map
Map<String,String> specMap = JSON.parseObject(sku.getSpec(), Map.class);
for (Map.Entry<String, String> entry : specMap.entrySet()) {
//循环组装Sku的名字
name+=" "+entry.getValue();
}
sku.setName(name);
sku.setId(String.valueOf(idWorker.nextId()));
//创建日期
sku.setCreateTime(date);
//修改日期
sku.setUpdateTime(date);
//商品分类ID
sku.setCategoryId(spu.getCategory3Id());
//分类名字
sku.setCategoryName(category.getName());
//品牌名字
sku.setBrandName(brand.getName());
sku.setSpuId(spu.getId());
//增加
skuMapper.insertSelective(sku);
}
}
5.修改,
public void updateGoods(Goods goods) {
//增加Spu
//如果存在spu,则修改spu,把spu的sku集合先删除再添加
Spu spu = goods.getSpu();
if(spu.getId()==null) {
spu.setId(String.valueOf(idWorker.nextId()));
spuMapper.insertSelective(spu);
}
else {
spuMapper.updateByPrimaryKeySelective(spu);
Sku sku = new Sku();
sku.setSpuId(spu.getId());
skuMapper.delete(sku);
}
//增加Sku
Date date = new Date();
Category category = categoryMapper.selectByPrimaryKey(spu.getCategory3Id());
Brand brand = brandMapper.selectByPrimaryKey(spu.getBrandId());
//获取Sku集合
List<Sku> skuList = goods.getSkuList();
for (Sku sku : skuList) {
//构建SKU名称,采用SPU+规格值组装
if(StringUtil.isNullOrEmpty(sku.getSpec()))
{
sku.setSpec("{}");
}
//获取Spu的名字
String name = spu.getName();
//将规格转换成Map
Map<String,String> specMap = JSON.parseObject(sku.getSpec(), Map.class);
for (Map.Entry<String, String> entry : specMap.entrySet()) {
//循环组装Sku的名字
name+=" "+entry.getValue();
}
sku.setName(name);
sku.setId(String.valueOf(idWorker.nextId()));
//创建日期
sku.setCreateTime(date);
//修改日期
sku.setUpdateTime(date);
//商品分类ID
sku.setCategoryId(spu.getCategory3Id());
//分类名字
sku.setCategoryName(category.getName());
//品牌名字
sku.setBrandName(brand.getName());
sku.setSpuId(spu.getId());
//增加
skuMapper.insertSelective(sku);
}
}
6.批量上架
6.1 SpuServiceImpl
@Override
public int putMany(Long[] ids) {
Spu spu=new Spu();
spu.setIsMarketable("1");//上架
//批量修改
Example example=new Example(Spu.class);
Example.Criteria criteria = example.createCriteria();
criteria.andIn("id", Arrays.asList(ids));//id
//下架
criteria.andEqualTo("isMarketable","0");
//审核通过的
criteria.andEqualTo("status","1");
//非删除的
criteria.andEqualTo("isDelete","0");
return spuMapper.updateByExampleSelective(spu, example);
}
6.2 Controller:
@PutMapping("/put/many")
public Result putMany(@RequestBody Long[] ids){
int count = spuService.putMany(ids);
return new Result(true,StatusCode.OK,"上架"+count+"个商品");
}