leecode 解题总结:119. Pascal's Triangle II

#include <iostream>
#include <stdio.h>
#include <vector>
using namespace std;
/*
问题:
Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3,
Return [1,3,3,1].

Note:
Could you optimize your algorithm to use only O(k) extra space?

分析:给定下标k,返回地k行的杨辉三角,只能使用k个常量的空间。
这个明显用公式(a+b)^n=C(n,k) * a^(n-k) * b^k 累加求和,其中k从0到n
C(n,k) = n! / ( (k!) * (n-k)! )来计算,k从0到n


输入:
0
3
输出:
1
1,3,3,1,

报错:输入21,溢出,用long long 仍然溢出:输入30溢出
关键:
1 关于溢出,看到阶乘想到long long,如果long long 溢出,
用迭代求,迭代仍然报错,不能直接用result.at(i) = result.at(i-1) *(rowIndex - i + 1) / i;
则之前的乘积必须用long long变量来求,后面存储最终结果用一下转换
2
C(n,k) = n! / ( (k!) * (n-k)! ) , i累加时, 
初始结果为1,计算下一个结果是乘以:n/1,再下一个是(n-1)/2,(n-2)/3,...,1/n 。 但是这样计算需要转化为浮点数
*/

class Solution {
public:
    vector<int> getRow(int rowIndex) {
        if(rowIndex < 0)
		{
			vector<int> result;
			return result;
		}
		vector<int> result(rowIndex + 1 , 1);//初始化
		//初始化阶乘,用long long也会溢出,说明题目想让我们迭代求
		//C(n,k) = n! / ( (k!) * (n-k)! ) , i累加时, 
		long long current = 1;
		long long temp;
		for(int i = 1 ; i <= rowIndex ; i++)
		{
			//result.at(i) = ( (fact.at(rowIndex) /  fact.at(i) ) / fact.at(rowIndex - i) );//类型转换没有用
			//初始结果为1,计算下一个结果是乘以:n/1,再下一个是(n-1)/2,(n-2)/3,...,1/n 。 但是这样计算需要转化为浮点数
			temp = current * (rowIndex - i + 1) / i;
			current = temp;
			result.at(i) = (int) temp;//转换为整形
		}
		return result;
    }
};

void print(vector<int >& result)
{
	if(result.empty())
	{
		cout << "no result" << endl;
		return;
	}
	int size = result.size();
	for(int i = 0 ; i < size ; i++)
	{
		cout << result.at(i) << "," ;
	}
	cout << endl;
}

void process()
{
	 int num;
	 Solution solution;
	 vector<int > result;
	 while(cin >> num )
	 {
		 result = solution.getRow(num);
		 print(result);
	 }
}

int main(int argc , char* argv[])
{
	process();
	getchar();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值