python机器学习模型选择&调参工具Hyperopt-sklearn(1)——综述&分类问题

本文介绍了Hyperopt-sklearn库在机器学习模型选择和调参中的应用,特别是针对分类问题。通过示例展示了如何安装、配置HyperoptEstimator,并列举了支持的分类器和预处理方法。实验结果显示,使用该工具可以显著提高模型如SVM的预测准确性。
摘要由CSDN通过智能技术生成

针对特定的数据集选择合适的机器学习算法是冗长的过程,即使是针对特定的机器学习算法,亦需要花费大量时间和精力调整参数,才能让模型获得好的效果,Hyperopt-sklearn可以辅助解决这样的问题。

主页:http://hyperopt.github.io/hyperopt-sklearn/

安装方法:

git clone https://github.com/hyperopt/hyperopt-sklearn.git
cd hyperopt
pip install -e .

基础实例:

from hpsklearn import HyperoptEstimator

# Load Data
# ...

# Create the estimator object
estim = HyperoptEstimator()

# Search the space of classifiers and preprocessing steps and their
# respective hyperparameters in sklearn to fit a model to the data
estim.fit(train_data, train_label)

# Make a prediction using the optimized model
prediction = estim.predict(unknown_data)

# Report the accuracy of the classifier on a given set of data
score = estim.score(test_data, test_label)

# Return instances of the classifier and preprocessing steps
model = estim.best_model()

针对分类问题,可以如下指定HyperoptEstimator

from hyperopt import tpe
from hpsklearn import HyperoptEstimator, any_classifier
estim = HyperoptEstimator(classifier=any_classifier('clf'),algo=tpe.suggest)
estim.fit(X_train,y_train)

其中any_classifier是常用分类器的集合,根据源码

def any_classifier(name):
    return hp.choice('%s' % name, [
        svc(name + '.svc'),
        knn(name + '.knn'),
 
Hyperopt-sklearn是基于scikit-learn项目的一个子集,其全称是:Hyper-parameter optimization for scikit-learn,即针对scikit-learn项目的超级参数优化工具。由于scikit-learn是基于Python机器学习开源框架,因此Hyperopt-sklearn也基于Python语言。Hyperopt-sklearn的文档称:对于开发者而言,针对不同的训练数据挑选一个合适的分类器(classifier)通常是困难的。而且即使选好了分类器,后面的参数调试过程也相当乏味和耗时。更严重的是,还有许多情况是开发者好不容易调试好了选定的分类器,却发现一开始的选择本身就是错误的,这本身就浪费了大量的精力和时间。针对该问题Hyperopt-sklearn提供了一种解决方案。Hyperopt-sklearn支持各种不同的搜索算法(包括随机搜索、Tree of Parzen Estimators、Annealing等),可以搜索所有支持的分类器(KNeightborsClassifier、KNeightborsClassifier、SGDClassifier等)或者在给定的分类器下搜索所有可能的参数配置,并评估最优选择。并且Hyperopt-sklearn还支持多种预处理流程,包括TfidfVectorizer,Normalzier和OneHotEncoder等。那么Hyperopt-sklearn的实际效果究竟如何?下表分别展示了使用scikit-learn默认参数和Hyperopt-sklearn优化参数运行的分类器的F-score分数,数据源来自20个不同的新闻组稿件。可以看到,经过优化的分类器的平均得分都要高于默认参数的情况。另外,Hyperopt-sklearn的编码量也很小,并且维护团队还提供了丰富的参考样例。 标签:Hyperopt
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值