Machine Learning with Scikit-Learn and Tensorflow 6 决策树(章节目录)

书籍信息
Hands-On Machine Learning with Scikit-Learn and Tensorflow
出版社: O’Reilly Media, Inc, USA
平装: 566页
语种: 英语
ISBN: 1491962291
条形码: 9781491962299
商品尺寸: 18 x 2.9 x 23.3 cm
ASIN: 1491962291

系列博文为书籍中文翻译
代码以及数据下载:https://github.com/ageron/handson-ml

与SVM类似,决策树是强大的机器学习算法,能够用于回归和分类。决策树可以拟合复杂的数据,例如第2章训练的模型完美拟合训练数据(实际上过拟合)。

决策树是随机森林的基本组成成分,随机森林是目前最为强大的机器学习算法之一。

在本章,首先,我们讨论决策树的训练、可视化以及如何利用决策树进行预测。然后,我们介绍scikit-learn使用的CART算法,并且讨论如何限制决策树的训练过程以及如何使用决策树进行回归。最后,我们讨论决策树的局限性。

6.1 决策树的训练与可视化
http://blog.csdn.net/qinhanmin2010/article/details/68499196
6.2 进行预测
http://blog.csdn.net/qinhanmin2010/article/details/68558969
6.3 预测类别概率
http://blog.csdn.net/qinhanmin2010/article/details/68584717
6.4 CART算法
http://blog.csdn.net/qinhanmin2010/article/details/68935565
6.5 计算复杂度
http://blog.csdn.net/qinhanmin2010/article/details/68936099
6.6 基尼不纯度/熵
http://blog.csdn.net/qinhanmin2010/article/details/68937241
6.7 规范化超参数
http://blog.csdn.net/qinhanmin2010/article/details/68940762
6.8 决策树回归
http://blog.csdn.net/qinhanmin2010/article/details/68941236
6.9 决策树局限性
http://blog.csdn.net/qinhanmin2010/article/details/68942741
6.10 练习
http://blog.csdn.net/qinhanmin2010/article/details/68944735

When most people hearMachine Learning,” they picture a robot: a dependable butler or a deadly Terminator depending on who you ask. But Machine Learning is not just a futuristic fantasy, it’s already here. In fact, it has been around for decades in some specialized applications, such as Optical Character Recognition (OCR). But the first ML application that really became mainstream, improving the lives of hundreds of millions of people, took over the world back in the 1990s: it was the spam filter. Not exactly a self-aware Skynet, but it does technically qualify as Machine Learning (it has actually learned so well that you seldom need to flag an email as spam anymore). It was followed by hundreds of ML applications that now quietly power hundreds of products and features that you use regularly, from better recommendations to voice search. Where does Machine Learning start and where does it end? What exactly does it mean for a machine to learn something? If I download a copy of Wikipedia, has my computer really “learned” something? Is it suddenly smarter? In this chapter we will start by clarifying what Machine Learning is and why you may want to use it. Then, before we set out to explore the Machine Learning continent, we will take a look at the map and learn about the main regions and the most notable landmarks: supervised versus unsupervised learning, online versus batch learning, instance-based versus model-based learning. Then we will look at the workflow of a typical ML project, discuss the main challenges you may face, and cover how to evaluate and fine-tune a Machine Learning system. This chapter introduces a lot of fundamental concepts (and jargon) that every data scientist should know by heart. It will be a high-level overview (the only chapter without much code), all rather simple, but you should make sure everything is crystal-clear to you before continuing to the rest of the book. So grab a coffee and let’s get started!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值