NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.

colab 报下面的错误怎么解决? --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) <ipython-input-2-6b6f3d2a4e25> in <cell line: 0>() 1 import datasets ----> 2 conll2003 = datasets.load_dataset("conll2003") 1 frames /usr/local/lib/python3.11/dist-packages/datasets/builder.py in as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1171 is_local = not is_remote_filesystem(self._fs) 1172 if not is_local: -> 1173 raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") 1174 if not os.path.exists(self._output_dir): 1175 raise FileNotFoundError( NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.

这个错误表明 datasets 库在尝试从本地文件系统加载缓存的数据集时遇到了不支持的操作。在 Colab 环境中,这通常是由于缓存路径配置或库版本问题导致的。以下是针对 Colab 环境的具体解决方案:

解决方案

1. 更新 datasets

在 Colab 中运行以下命令更新到最新版本:

python运行

!pip install datasets --upgrade
2. 禁用缓存或指定临时缓存目录

在加载数据集时强制从源下载,或指定一个可写的临时目录:

python运行

from datasets import load_dataset

# 方法1:禁用缓存(每次重新下载)
conll2003 = load_dataset("conll2003", download_mode="force_redownload")

# 方法2:指定临时缓存目录(Colab的/tmp目录通常可写)
conll2003 = load_dataset("conll2003", cache_dir="/tmp/huggingface_cache")
3. 手动下载数据集

如果上述方法仍失败,可以通过 Hugging Face Hub 手动下载并加载:

python运行

# 克隆数据集仓库到Colab
!git clone https://huggingface.co/datasets/conll2003

# 从本地路径加载
conll2003 = load_dataset("/content/conll2003")

完整示例代码

在 Colab 中按顺序运行以下代码块:

python运行

# 更新库
!pip install datasets --upgrade

# 加载数据集(禁用缓存)
from datasets import load_dataset
conll2003 = load_dataset("conll2003", download_mode="force_redownload")

# 验证加载结果
print(conll2003)

错误原因分析

  1. Colab 文件系统限制:Colab 的临时文件系统可能与 datasets 库的缓存机制不兼容。
  2. 库版本不匹配:旧版 datasets 可能存在本地文件系统处理的漏洞。
  3. 缓存路径权限问题:默认缓存目录可能不可写或被限制访问。

其他注意事项

  • 临时缓存:Colab 会话结束后,/tmp 目录中的数据会被清除,适合一次性使用。
  • 持久化存储:若需要长期保存数据集,可挂载 Google Drive 并指定缓存目录到 Drive。
  • 网络问题:确保 Colab 环境能访问 Hugging Face 的服务器(可能需要代理)。

如果问题仍然存在,建议提供更多环境信息(如 datasets 版本)以便进一步排查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值