python数据分析从入门到实战
文章平均质量分 83
本专栏致力于为您提供一条深入学习Python数据科学核心库的捷径,让您轻松驾驭NumPy、Pandas、Matplotlib这三个无价之宝,开启数据分析与可视化的奇妙旅程.
攻城狮的梦
专注于php,python,go语言开发,熟练crm,电商等saas平台,以及小程序,app开发
展开
-
扣子开发公众号文章自动发布
最近有一位做公众号的朋友说,每天都要写文章,然后在特定时间发布,有的时间会忘记发布,闲聊的时候说没有通过技术实现文章自动发布,比如在公众号聊天窗口发送发布或者设置特定的时间会自动发布。2:设置工作流的执行流程,我们这里用户输入三个变量,分别是文章标题,文章内容和封面的链接,然后添加一个公众号插件,把输入的变量分别关联上公众号发布草稿,公众号发布媒体和公众号文章发布。- 获取{{input}}中内容之后的内容保存到{{conttent}}中。- 以{{input}}的内容进行处理。原创 2024-10-23 17:46:29 · 72 阅读 · 0 评论 -
pandas合并excel
假如我们现在有二个文件,分别是测试1,测试2,文件1中有客户名称,客户地址,客户类型等,文件2中有客户名称,客户成交额,客户规模等,我们想要合并文件1中客户地址,客户类型和文件2中的客户成交额,客户规模,使用客户名称作为关联到一个excel中怎么操作呢?select_cols1 = ['客户名称','客户地址', '客户类型']select_cols = ['客户名称', '客户状态','创建时间']select_cols2 = ['客户名称','客户规模']原创 2024-06-27 17:38:29 · 383 阅读 · 0 评论 -
pandas合并,拆分excel
new_df.to_excel(to_path, index=False) # 不包含原始索引,index=False。merged_df.to_excel(writer, sheet_name='合并', index=False)df1 = pd.read_excel(path, sheet_name='商品明细')df = pd.read_excel(path, sheet_name='商品明细')# 假设你想要将列'A'和'B'拆分到一个新的DataFrame中。# 读取第一个sheet的数据。原创 2024-06-26 18:05:56 · 454 阅读 · 0 评论 -
Windows下ChatGLM-6B部署
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。ChatGLM-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。原创 2024-06-26 11:05:08 · 151 阅读 · 0 评论 -
PyTorch 下GPU训练环境搭建
'D:\\installation\\anaconda\\envs\\luye\\Lib\\site-packages\\cv2\\cv2.pyd'对大模型进行训练时,可以使用cpu和gpu,gpu训练效率更高,那么在python在怎么使用gpu进行模型训练呢。这里的cp311是python的版本表示3.11.1 cu121表示cuda版本为12.1。下载完成以后,直接安装,选择自定义安装,一步一步,点击完成。这里已经要选择和自己python版本对应的torch版本。5:安装完成以后再次运行脚本。原创 2024-05-22 21:44:20 · 202 阅读 · 0 评论 -
如何开发一个基于通义千问-14B的对话应用
我们利用Langchain-Chatchat和Qwen1.5-14B-Chat-GPTQ-Int4来实现一个对话项目应用。安装模型推理引擎我们使用的基于Transformers的Qwen ,需要安装Transformers。注意:这个依赖库需要全部安装,如果有报错的要解决,不然后面应用是启动不了的。这里安装Qwen 1.5版本的。需要安装python依赖环境。我这里显卡是118版本的。下载langchain。原创 2024-05-20 09:02:52 · 217 阅读 · 0 评论 -
开源大模型常用术语
1:什么是LLM大型语言模型(Large Language Model)LLM指的是基于深度学习技术,经过大量文本数据训练而成的模型,能够理解、生成和处理自然语言,提供诸如语言翻译、文本摘要、问答系统等服务。这类模型由于其规模庞大,能够学习到语言的深层次规律,从而在各种语言任务上展现出优越的性能。2: 什么是LangChainLangChain是一个开源框架,专为简化和加速基于大型语言模型(LLM)的应用程序开发而设计。原创 2024-05-18 15:06:58 · 110 阅读 · 0 评论 -
使用pandas按照商品和下单人统计下单数据
这里出现一个问题,由于给的表格存在金额数据为空的数据,我金额填充为0,这样出现的情况就是只要存在下单人就算一单,不管金额。关联条件 = df[(df.商品 == 商品) & (df.下单人==下单人)].fillna('空值')data = pd.DataFrame(dic, columns=label).sort_values(by='金额')单数,金额 = 关联条件.shape[0],关联条件.金额.sum()dic,label = [],('下单人','商品','金额','单数','总数')原创 2024-01-12 14:24:13 · 1301 阅读 · 0 评论 -
pandas操作excel
df.to_excel('新的文件路径.xlsx', index=False)result = df[df['你要查找的列名'] == '你要查找的值']df = pd.read_excel('你的文件路径.xlsx')df = pd.read_excel('你的文件路径.xlsx')df = df.drop('你要删除的列名', axis=1)# 删除指定列的数据,例如删除列名为'你要删除的列名'的列。# 查找元素,例如查找所有值为'你要查找的值'的行。# 保存合并后的数据到新的Excel文件。原创 2024-01-20 20:50:01 · 1677 阅读 · 0 评论 -
NumPy常用操作
是一个开源的Python库,它为Python提供了强大的多维数组对象和用于处理这些数组的函数。NumPy的核心是ndarray,它是一个高效的多维数组容器,用于存储和处理大规模的数据。NumPy还提供了许多数学函数,用于数组之间的操作,以及用于线性代数、傅立叶变换和随机数生成等功能。这里我们只是举例演示部分NumPy的函数操作,NumPy还有很多函数用于复杂的代数运算和其他用途。原创 2024-05-14 10:25:18 · 539 阅读 · 1 评论 -
plt.animation绘制动画
matplotlib.animation 是 Matplotlib 库中的一个模块,用于创建动画。它提供了多种工具和函数,使您能够轻松地创建各种类型的动画。原创 2024-01-19 21:24:43 · 1168 阅读 · 0 评论 -
plt.table绘制表格
plt.table()函数是Matplotlib库中的一个函数,用于在图表中插入一个表格。它提供了创建和定制表格的功能。下面是plt.table()函数的一些常用参数:cellText: 一个二维列表或数组,表示表格中的文本内容。每个元素对应一个单元格的内容。cellLoc: 单元格中文本的布局方式,可以是 'center'、'left' 或 'right'。默认值为 'center'。loc: 表格的位置,可以是 'upper right'、'lower left' 等。原创 2024-01-19 17:05:49 · 1589 阅读 · 0 评论 -
使用Matplotlib绘制3d图形
为了绘制立体,主要用到Matplotlib中的一个函数voxels绘制一组填充体素,所有体素在坐标轴上绘制为1x1x1立方体,filled[0, 0, 0]的lower corner位于原点。被遮挡的面不再绘制。原创 2024-01-18 15:10:56 · 1256 阅读 · 0 评论 -
plt.subplots绘图
plt.subplots() 是 Matplotlib 库中的一个函数,用于创建一个新的图形窗口或激活一个已存在的图形窗口,并返回一个或多个子图(subplots)的坐标轴对象。plt.subplots() 函数在 Matplotlib 中用于创建子图。以下是其常用的参数:nrows, ncols: 定义子图的行数和列数。例如,plt.subplots(2, 2) 将创建一个2x2的子图布局。sharex, sharey: 是否共享x轴或y轴。默认为False。原创 2024-01-18 13:45:34 · 3866 阅读 · 0 评论 -
numpy中数组的操作
shape:这是一个元组,描述了数组的维度。第一个参数是数组,第二个参数是所沿的轴,对于二维数组,0的话就是每一行的最小值,1的话就是每一列的最小值,不指定轴的话,默认为所有元素的最小值。它等于 numpy.prod(array.shape),或者如果你只处理一维数组,它就是数组的长度。NumPy 数组(通常称为 ndarray)有许多有用的属性,这些属性可以帮助你了解数组的各个方面。ctypes:如果数组的数据类型是 ctypes 兼容的,这个属性会返回一个描述数据类型的 ctypes 对象。原创 2024-01-17 16:37:10 · 1453 阅读 · 0 评论 -
使用numpy创建数组
在Python的NumPy库中,有几种不同的方法可以创建数组。我们演示下不同方式创建数组的例子。原创 2024-01-17 14:27:56 · 899 阅读 · 0 评论 -
一文了解pandas基础
value = [{"计算机": 5000, "历史": 7000, "艺术": 6000},{"计算机": 5000, "历史": 7000, "艺术": 6000}]value = [{"计算机": 5000, "历史": 7000, "艺术": 6000},{"计算机": 5000, "历史": 7000, "艺术": 6000}]df = pd.DataFrame(value,index=["历史","小艺术"],columns=["报名人数","录取人数","学费"])原创 2024-01-12 16:32:04 · 1033 阅读 · 0 评论 -
利用matplotlib实现绘制客户数据增长报表
首先利用sql,统计数据客户数据,我们这次要实现客户维度的四张报表客户每月增长趋势表,客户订单每月增长表,客户每月转化增长表,客户每月下单增长表,我们利用matplotlib将月份设置我x坐标,将数据处理为y坐标,处理完的数据格式如下。原创 2023-12-16 11:21:32 · 91 阅读 · 0 评论