咽部肌肉松弛锻炼

  • 既然鼾声的真正源头是松弛的咽腔肌肉,最根本的解决方法就是锻炼咽腔肌肉,增强咽腔肌肉的力量,使它变得结实。独家奉献自创的除鼾大法,彻底根治顽固呼噜声的练习

【1】伸舌练习。尽力把舌头伸出,缩回来再尽力伸出,如此循环,一次做至少200下以上,直到咽腔感觉很酸。

【2】干漱口练习。不含水,把腮帮子鼓起来,再缩回去,如此循环,一次做至少200下以上,直到咽腔感觉很酸。含水漱口也可。

【3】扫牙龈练习。用舌头快速扫过牙齿外侧(脸颊侧)的牙龈,先舔上颚的牙龈,快速从左扫到右,再从右扫到左,一次做50下以上。然后同法舔下颚的牙龈,直到咽腔感觉很酸。

【4】卷舌练习。舌头顶着上颚,用力向后卷舌头,不离开上颚,一次做50下以上,直到软腭感觉很酸。

前三个练习锻炼整个咽腔肌肉,最后一个练习则是单独针对软腭的强化锻炼。年轻人舌头松弛比较少见,打鼾往往是软腭松弛引起的,因此专门增加这个动作。这4个练习,每天有空就做。初次锻炼时,做到50下,就感觉咽腔很酸,这恰好证明了原来的肌肉是很无力的,急需锻炼。我现在已经可以连续做伸舌和干漱口800下,含水漱口200多下,扫牙龈200下,卷舌100下。 因为咽腔肌肉在日常生活中根本得不到锻炼,只需要稍微锻炼,对肌肉的刺激特别大,所以以上练习的见效特别快,效果特别好!快则几天,慢则几十天,就会彻底消除睡眠鼾声,甚至连粗重的呼吸声也会消除。科学原理:咽腔肌肉得到锻炼后,肌肉变得结实紧致,富有弹性,使呼吸道变宽。即使在熟睡时,完全放松的肌肉所占的体积仍然远小于原来的体积,软腭下垂的程度也减少,呼吸道就宽阔了。我们做个类比就知道了:常锻炼的人在完全放松的情况下,全身肌肉仍然紧致有弹性,相反,没经过锻炼的肥肉就会松松垮垮的。其实止鼾器的原理也是通过拉伸舌头,把软腭和呼吸道分离,与我的练习是一个道理。中国民间治疗打鼾的偏方,例如喝花椒水、用冰盐水漱口刷牙等,目的也是使咽腔的肉收缩,体积减小,从而使呼吸道宽阔,但这些偏方的效果比较有限,只有锻炼咽腔肌肉才是真正的治本之道。 如果具备过度肥胖、缺乏运动、抽烟喝酒、浓茶咖啡、服用镇静剂、常吃辛辣食物和熬夜、过度疲劳的,只通过这些练习,也能大大降低鼾声的分贝数。我的老母亲六十多岁了,身体很胖,已经打呼噜三十多年,每晚都是鼾声如雷,不论仰卧侧卧都会打鼾。她将信将疑地用我的方法锻炼口腔,起初每天只锻炼一次,仅仅三天,鼾声就小了很多。后来增加到每天锻炼3次,每次只做前两个练习,就听不到鼾声了。 这4项练习毫无副作用,而且可以充分运动你的脸,保持并提升面部轮廓,起到抗衰老效果,还可以使舌头灵活,口齿伶俐,对矫正口吃有很大作用,对于老年人更有助于预防中风和老年痴呆,可谓一举四得!美容院的面部提升护理,做一次就要200元,商场专柜里卖的各种提拉紧致功能的化妆品,价高量少。其实你不妨自己锻炼。这4种练习很少人会去做,如果你能坚持做,经过十年光阴的历练,你就会比同龄人年轻许多。

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的与数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与数据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值