一、需求背景:人工智能训练好的模型model,需要放到服务器上,作为基础能力提供给应用侧,否则model只能中电脑本地处理。那么怎么解决这个部署到服务器上的问题呢?
二、解决思路:web应用部署,有3种主流的方式,
1.Django:大而全,集成了很多组件,属于全能型、重量级框架。
2.Falsk:小而轻,极容易上手,第三方提供的组件多,加起来可以完全覆盖Django。
3.Torando:高并发性能强,但是较为原始的框架,后期拓展可能会受限。
综上所述,选择Flask框架。
分2步实现:1是在本地先跑起来,2是放到云服务器上跑起来。
三、实现操作:
1.安装flask
pip install Flask
2.验证是否已经安装成功,若import没有报错,即是已经安装成功:
import flask
3.我用的是jupyter notebook环境,写一个简单的flask程序:
#export
# 【整体流程】
# 在app.py程序文件中,app是flask的实例,功能就是接受来自web服务器的请求,
# 1、浏览器将请求给web服务器,web服务器将请求给app ,
# 2、app收到请求,