如何分析、统计算法的执行效率和资源消 耗?

我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,
如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编
写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。
其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析。而且,我个人认为,复
杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半。
复杂度分析实在太重要了,因此我准备用两节内容来讲。希望你学完这个内容之后,无论在任何
场景下,面对任何代码的复杂度分析,你都能做到“庖丁解牛”般游刃有余。
为什么需要复杂度分析?
你可能会有些疑惑,我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存
大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据
更准确吗?
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 2/19
首先,我可以肯定地说,你这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还
给这种方法起了一个名字,叫事后统计法。但是,这种统计方法有非常大的局限性。
1. 测试结果非常依赖测试环境
测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用 Intel
Core i9 处理器和 Intel Core i3 处理器来运行,不用说,i9 处理器要比 i3 处理器执行的速度快
很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器
上时,可能会有截然相反的结果。
2. 测试结果受数据规模的影响很大
后面我们会讲排序算法,我们先拿它举个例子。对同一个排序算法,待排序数据的有序度不一
样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需
要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真
实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!
所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这
就是我们今天要讲的时间、空间复杂度分析方法。
大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,
用“肉眼”得到一段代码的执行时间呢?
这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,我就带你一块来估算一下这段代码的
执行时间。
从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行
代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以
1 int cal(int n) {
2 int sum = 0;
3 int i = 1;
4 for (; i <= n; ++i) {
5 sum = sum + i;
6 }
7 return sum;
8 }
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 3/19
假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时
间是多少呢?
第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要
2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,
所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
按照这个分析思路,我们再来看这段代码。
我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?
第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n
遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n 遍,所以需要 2n *
unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n +2n+3)*unit_time。
尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到
一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数
据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。
公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
1 int cal(int n) {
2 int sum = 0;
3 int i = 1;
4 int j = 1;
5 for (; i <= n; ++i) {
6 j = 1;
7 for (; j <= n; ++j) {
8 sum = sum + i * j;
9 }
10 }
11 }
 复制代码
2 2
2
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 4/19
所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n +2n+3)。这就是大 O
时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码
执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time
complexity),简称时间复杂度。
当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左
右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表
示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n )。
时间复杂度分析
前面介绍了大 O 时间复杂度的由来和表示方法。现在我们来看下,如何分析一段代码的时间复
杂度?我这儿有三个比较实用的方法可以分享给你。
1. 只关注循环执行次数最多的一段代码
我刚才说了,大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常
量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代
码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行
次数的 n 的量级,就是整段要分析代码的时间复杂度。
为了便于你理解,我还拿前面的例子来说明。
其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循
环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码
被执行了 n 次,所以总的时间复杂度就是 O(n)。
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
我这里还有一段代码。你可以先试着分析一下,然后再往下看跟我的分析思路是否一样。
2
2
1 int cal(int n) {
2 int sum = 0;
3 int i = 1;
4 for (; i <= n; ++i) {
5 sum = sum + i;
6 }
7 return sum;
8 }
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 5/19
这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间
复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。
第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟
n 的规模无关。
这里我要再强调一下,即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n
无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间
会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长
的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有
影响。
int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
} i
nt sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
} i
nt sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
} r
eturn sum_1 + sum_2 + sum_3;
}
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 6/19
那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n ),你应该能容易就分
析出来,我就不啰嗦了。
综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为
O(n )。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规
律抽象成公式就是:
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n)))
=O(max(f(n), g(n))).
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
我刚讲了一个复杂度分析中的加法法则,这儿还有一个乘法法则。类比一下,你应该能“猜
到”公式是什么样子的吧?
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).
也就是说,假设 T1(n) = O(n),T2(n) = O(n ),则 T1(n) * T2(n) = O(n )。落实到具体的代码
上,我们可以把乘法法则看成是嵌套循环,我举个例子给你解释一下。
我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n)
= O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个
2
2
2 3
1int cal(int n) {
2 int ret = 0;
3 int i = 1;
4 for (; i < n; ++i) {
5 ret = ret + f(i);
6 }
7 }
8 9
int f(int n) {
10 int sum = 0;
11 int i = 1;
12 for (; i < n; ++i) {
13 sum = sum + i;
14 }
15 return sum;
16 }
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 7/19
cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n )。
我刚刚讲了三种复杂度的分析技巧。不过,你并不用刻意去记忆。实际上,复杂度分析这个东西
关键在于“熟练”。你只要多看案例,多分析,就能做到“无招胜有招”。
几种常见时间复杂度实例分析
虽然代码千差万别,但是常见的复杂度量级并不多。我稍微总结了一下,这些复杂度量级几乎涵
盖了你今后可以接触的所有代码的复杂度量级。
对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多
项式量级只有两个:O(2 ) 和 O(n!)。
我们把时间复杂度为非多项式量级的算法问题叫作NP(Non-Deterministic Polynomial,非确
定多项式)问题。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会
无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,关于 NP 时间复杂
度我就不展开讲了。我们主要来看几种常见的多项式时间复杂度。
1. O(1)
首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一
行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。
2
n
1 int i = 8;
2 int j = 6;
3 int sum = i + j;
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 8/19
我稍微总结一下,只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记
作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的
代码,其时间复杂度也是Ο(1)。
2. O(logn)、O(nlogn)
对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一
下。
根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算
出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。
还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个
一个列出来,就应该是这个样子的:
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2 =n 求解 x 这个问题
我们想高中应该就学过了,我就不多说了。x=log n,所以,这段代码的时间复杂度就是
O(log n)。
现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?
根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O(log n)。
1 i=1;
2 while (i <= n) {
3 i = i * 2;
4 }
 复制代码
x
2
2
1 i=1;
2 while (i <= n) {
3 i = i * 3;
4 }
 复制代码
3
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 9/19
实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度
都记为 O(logn)。为什么呢?
我们知道,对数之间是可以互相转换的,log n 就等于 log 2 * log n,所以 O(log n) = O(C *
log n),其中 C=log 2 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时
候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log n) 就等于 O(log n)。因此,在对数
阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。
如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则
吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn)
了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间
复杂度都是 O(nlogn)。
3. O(m+n)、O(m*n)
我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规
矩,先看代码!
从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所
以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的
时间复杂度就是 O(m+n)。
3 3 2 3
2 3
2 3
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
} i
nt sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
} r
eturn sum_1 + sum_2;
}
 复制代码
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 10/19
针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) =
O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。
空间复杂度分析
前面,咱们花了很长时间讲大 O 表示法和时间复杂度分析,理解了前面讲的内容,空间复杂度
分析方法学起来就非常简单了。
前面我讲过,时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长
关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表
示算法的存储空间与数据规模之间的增长关系。
我还是拿具体的例子来给你说明。(这段代码有点“傻”,一般没人会这么写,我这么写只是为
了方便给你解释。)
跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是
它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的
int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是
O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n ),像 O(logn)、O(nlogn) 这样的对数阶复杂度
平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,
掌握刚我说的这些内容已经足够了。
内容小结
基础复杂度分析的知识到此就讲完了,我们来总结一下。
1void print(int n) {
2 int i = 0;
3 int[] a = new int[n];
4 for (i; i <n; ++i) {
5 a[i] = i * i;
6 }
7 for (i = n-1; i >= 0; --i) {
8 print out a[i]
9 }
10}
 复制代码
2
9/27/2018 极客时间 | 数据结构与算法之美
https://time.geekbang.org/column/article/40036 11/19
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间
的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从
低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n )。等你学完整个专栏之后,你就会发
现几乎所有的数据结构和算法的复杂度都跑不出这几个。
复杂度分析并不难,关键在于多练。 之后讲后面的内容时,我还会带你详细地分析每一种数据
结构和算法的时间、空间复杂度。只要跟着我的思路学习、练习,你很快就能和我一样,每次看
到代码的时候,简单的一眼就能看出其复杂度,难的稍微分析一下就能得出答案。
课后思考
有人说,我们项目之前都会进行性能测试,再做代码的时间复杂度、空间复杂度分析,是不是多
此一举呢?而且,每段代码都分析一下时间复杂度、空间复杂度,是不是很浪费时间呢?你怎么
看待这个问题呢?
欢迎留言和我分享,我会第一时间给你反馈。
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值