【题目描述】
平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。
若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短路径。
【输入】
共n+m+3行,其中:
第一行为整数n。
第2行到第n+1行(共n行) ,每行两个整数x和y,描述了一个点的坐标。
第n+2行为一个整数m,表示图中连线的个数。
此后的m 行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
【输出】
一行,一个实数(保留两位小数),表示从s到t的最短路径长度。
【输入样例】
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5
【输出样例】
3.41
这道题用来floyd算法哈,大家有什么更好的方法欢迎在评论区留言哦!具体代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#define INF 0x3f3f3f3f
#define N 1001
using namespace std;
int x[N], y[N];
double g[N][N];
double calculate(int x1, int y1, int x2, int y2)
{
return sqrt((double)(x1 - x2) * (x1 - x2) + (double)(y1 - y2) * (y1 - y2));
}
int main()
{
int n, m;
cin >> n;//n个点
for (int i = 1; i <= n; i++)
cin >> x[i] >> y[i];//n个点的横纵坐标
cin >> m;//m条线
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
g[i][j] = INF;//将g的各个点都设置为尽可能地大
g[j][i] = INF;
}
g[i][i] = 0;//这个点不用设置,因为没有起点和终点相同的路径
}
for (int i = 1; i <= m; i++)
{
int u, v;
cin >> u >> v;//路径的起点与终点
double temp = calculate(x[u], y[u], x[v], y[v]);//此路径的长度
g[u][v] = temp;
g[v][u] = temp;
}
for (int k = 1; k <= n; k++)//三重循环暴力枚举找出各个点之间的最短路径
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (g[i][j] > g[i][k] + g[k][j])
g[i][j] = g[i][k] + g[k][j];
int u, v;//输入目标点,和最终点
cin >> u >> v;
printf("%.2lf", g[u][v]);//输出结果
return 0;
}