信息学奥赛一本通1342:【例4-1】最短路径问题

【题目描述】

平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。

若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短路径。

【输入】

共n+m+3行,其中:

第一行为整数n。

第2行到第n+1行(共n行) ,每行两个整数x和y,描述了一个点的坐标。

第n+2行为一个整数m,表示图中连线的个数。

此后的m 行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。

最后一行:两个整数s和t,分别表示源点和目标点。

【输出】

一行,一个实数(保留两位小数),表示从s到t的最短路径长度。

【输入样例】

5 
0 0
2 0
2 2
0 2
3 1
5 
1 2
1 3
1 4
2 5
3 5
1 5

【输出样例】

3.41

这道题用来floyd算法哈,大家有什么更好的方法欢迎在评论区留言哦!具体代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
#define INF 0x3f3f3f3f
#define N 1001
using namespace std;
int x[N], y[N];
double g[N][N];
double calculate(int x1, int y1, int x2, int y2)
{
    return sqrt((double)(x1 - x2) * (x1 - x2) + (double)(y1 - y2) * (y1 - y2));
}
int main()
{
    int n, m;
    cin >> n;//n个点
    for (int i = 1; i <= n; i++)
        cin >> x[i] >> y[i];//n个点的横纵坐标
    cin >> m;//m条线
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        { 
            g[i][j] = INF;//将g的各个点都设置为尽可能地大
            g[j][i] = INF;
        }
        g[i][i] = 0;//这个点不用设置,因为没有起点和终点相同的路径
    }
    for (int i = 1; i <= m; i++)
    {
        int u, v;
        cin >> u >> v;//路径的起点与终点
        double temp = calculate(x[u], y[u], x[v], y[v]);//此路径的长度
        g[u][v] = temp;
        g[v][u] = temp;
    }
    for (int k = 1; k <= n; k++)//三重循环暴力枚举找出各个点之间的最短路径
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                if (g[i][j] > g[i][k] + g[k][j])
                    g[i][j] = g[i][k] + g[k][j];
    int u, v;//输入目标点,和最终点
    cin >> u >> v;
    printf("%.2lf", g[u][v]);//输出结果
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值