fzu Problem 2129 子序列个数

Accept: 107    Submit: 334

Time Limit: 2000 mSec    Memory Limit : 32768 KB

 Problem Description

子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。

例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。

对于给出序列a,请输出不同的子序列的个数。(由于答案比较大,请将答案mod 1000000007)

 Input

输入包含多组数据。每组数据第一行为一个整数n(1<=n<=1,000,000),表示序列元素的个数。

第二行包含n个整数a[i] (0<=a[i]<=1,000,000)表示序列中每个元素。

 Output

输出一个整数占一行,为所求的不同子序列的个数。由于答案比较大,请将答案mod 1000000007。

 Sample Input

4

1 2 3 2

 Sample Output

13

 Hint

其中40%数据点1<=n<=1000。

 Source

福州大学第十届程序设计竞赛


先找出规律,b[i]=b[i-1]*2+1;然后减去重复的,重复的个数等于,前一个当前数的前一个数的b值。
自己搞出来的,不容易呀。。。
#include<stdio.h>
#include<string.h>
#define mod 1000000007
#define N 1000005
long long  ans[N],a[N],b[N],mark[N];
int main()
{
    long long  i,n;
    while(scanf("%I64d",&n)!=EOF)
    {
        for(i=1;i<=n;i++)
        scanf("%I64d",&a[i]);
        memset(b,0,sizeof(b));
        memset(mark,0,sizeof(mark));
        for(i=1;i<=n;i++)
        {
            b[i]=(b[i-1]*2+1)%mod;
            //printf("b[i]=%I64d \n",b[i]);
            if(mark[a[i]]==1)
            {
               b[i]=(b[i]-ans[a[i]]-1)%mod;//注意判断这里,b[i]有可能小于ans[a[i]],因为都是取余后进行相减的;
               if(b[i]<0)
                 b[i]+=mod;
            }
            else
               mark[a[i]]=1;
            ans[a[i]]=b[i-1];
        }
        printf("%I64d\n",b[n]%mod);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值