Accept: 107 Submit: 334
Time Limit: 2000 mSec Memory Limit : 32768 KB
Problem Description
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。
对于给出序列a,请输出不同的子序列的个数。(由于答案比较大,请将答案mod 1000000007)
Input
输入包含多组数据。每组数据第一行为一个整数n(1<=n<=1,000,000),表示序列元素的个数。
第二行包含n个整数a[i] (0<=a[i]<=1,000,000)表示序列中每个元素。
Output
输出一个整数占一行,为所求的不同子序列的个数。由于答案比较大,请将答案mod 1000000007。
Sample Input
4
1 2 3 2
Sample Output
13
Hint
其中40%数据点1<=n<=1000。
Source
福州大学第十届程序设计竞赛
先找出规律,b[i]=b[i-1]*2+1;然后减去重复的,重复的个数等于,前一个当前数的前一个数的b值。
自己搞出来的,不容易呀。。。
#include<stdio.h>
#include<string.h>
#define mod 1000000007
#define N 1000005
long long ans[N],a[N],b[N],mark[N];
int main()
{
long long i,n;
while(scanf("%I64d",&n)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%I64d",&a[i]);
memset(b,0,sizeof(b));
memset(mark,0,sizeof(mark));
for(i=1;i<=n;i++)
{
b[i]=(b[i-1]*2+1)%mod;
//printf("b[i]=%I64d \n",b[i]);
if(mark[a[i]]==1)
{
b[i]=(b[i]-ans[a[i]]-1)%mod;//注意判断这里,b[i]有可能小于ans[a[i]],因为都是取余后进行相减的;
if(b[i]<0)
b[i]+=mod;
}
else
mark[a[i]]=1;
ans[a[i]]=b[i-1];
}
printf("%I64d\n",b[n]%mod);
}
}