乘法逆元的求法

乘法逆元的求法

对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,p * a+q * b = Gcd(a, b)的其他整数解满足:p = p0 + b/Gcd(a, b) * t q = q0 - a/Gcd(a, b) * t(其中t为任意整数)

至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可。

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),

q1 = q0*(c/Gcd(a,b)),p * a+q * b = c的其他整数解满足:p = p1 + b/Gcd(a, b) * t  q = q1 - a/Gcd(a, b) * t(其中t为任意整数)   p 、q就是p * a+q * b = c的所有整数解。


只有两个数互质的时候才存在乘法逆元,即c=1。

例:求5的模7逆

做辗转相除法, 求得整数b,k使得 5p+7q=1, 则p是5的模7逆,q是7的模5逆。

计算如下:

7=5+2, 5=2×2+1.

回代 1=5-2×2=5-2×(7-5)= 3×5-2×7,

得 5^ -1≡3(mod7).(其中“^”是次方的意思)

例:求21的模73逆

做辗转相除法, 求得整数b,k使得 21p+73q=1, 则p是21的模73逆,q是73的模21逆。

计算如下:

73=21*3+10

21=10*2+1

回代 1=21-10*2

1=21-(73-21*3)*2

=21-73*2+6*21

=7*21-73*2

得 21^ -1≡7(mod73). (其中“^”是次方的意思)


求乘法逆元的代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
int gcd(int a,int b,int &x,int &y)
{
    int ans;
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    ans = gcd(b,a%b,x,y);
    int temp = x;
    x= y;
    y= temp - (a/b)*y;
    return ans;
}
int main()
{
///求ax+by=c的乘法逆元
    int a,b,c,x,y;
    int temp;
    while(scanf("%d%d%d",&a,&b,&c),a||b||c)
    {
        int ans_x,ans_y;///a,b的逆元
        ///c总为1
        temp = gcd(a,b,x,y);
        if(c%temp)
        {
            printf("乘法逆元不存在!\n");
            continue;
        }
        ans_x = (x*c/temp) <0 ? x*c/temp+b : x*c/temp;
        ans_y = (y*c/temp) <0 ? y*c/temp+a : y*c/temp;
        printf("%d  %d\n",ans_x,ans_y);
        }
    return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值