Keras是一个高层的神经网络和深度学习库,可以快速搭建神经网络,易于调试和从扩展,是TensorFlow的官方API,内置了常用的公共数据集,可通过
keras.datasets
模块来加载和访问。
Keras中常见的集成数据集
名称 | 说明 |
---|---|
boston_sousing | 波士顿房价数据集 |
CIFAR10 | 10种类别的图片集 |
CIFAR100 | 100种类别的图片集 |
MNIST | 手写数字图片集 |
Fashion-MNIST | 10重时尚类别的图片集 |
IMDB | 电影点评数据集 |
reuters | 路透社新闻数据集 |
波士顿房价数据集
1. 加载数据集
import tensorflow as tf
boston_housing=tf.keras.datasets.boston_housing
#train_x和train_y分别接收训练数据集的属性和房价
#test_x和test_y分别接收测试数据集的属性和房价
#(train_x,train_y),(test_x,test_y)=boston_housing.load_data() #默认test_split=0.2,即train数据占比0.8,test数据占比0.2
(train_x,train_y),(test_x,test_y)=boston_housing.load_data(test_split=0)#所有数据划分为训练数据
print("Training set:",len(train_x))
print("Testing set:",len(test_x))
print("Dim of train_x:",train_x.ndim)#维度
print("Dim of train_x:",train_x.shape)#形状
print("Dim of train_y:",train_y.ndim)
print("Dim of train_y:",train_y.shape)
输出结果如下:
Training set: 506
Testing set: 0
Dim of train_x: 2
Dim of train_x: (506, 13)
Dim of train_y: 1
Dim of