二叉树算法练习
- 判断二叉树是否为平衡树
- 解题思路:计算每个节点的高度,null为-1,那么,叶子节点为0;判断左右两个子树的高度差是否大于1,若是,将结果置为false,否则继续递归depth方法。
- 时间复杂度O(n),
- 空间复杂度O(1).
public class Solution {
private boolean isBalanced = true;
//判断二叉树是否为平衡树
public boolean isBalanced(TreeNode root) {
deepth(root);
return this.isBalanced;
}
//返回当前节点的高度
private int deepth(TreeNode root){
//树已经不平衡了,不计算直接返回。
if(!this.isBalanced) return -1;
if(root == null) return -1;
int left = deepth(root.left);
int right = deepth(root.right);
//当前节点不满足,将结果置为false;
if(Math.abs(left -right) > 1)
this.isBalanced = false;
return Math.max(left,right) + 1;
}
}
- ps:以上方法在多线程情况下有线程安全问题。本人的解决方案是使用ThreadLocal来解决,具体代码如下:
public class Solution {
//此处保存判断二叉树的结果,如果要适用于多线程可以使用ThreadLocal
private ThreadLocal<Boolean> resMap = new ThreadLocal<Boolean>();
//判断二叉树是否为平衡树
public boolean isBalanced(TreeNode root) {
resMap.set(true);
deepth(root);
boolean res = resMap.get();
resMap.remove();
return res;
}
//返回当前节点的高度
private int deepth(TreeNode root){
//树已经不平衡了,不计算直接返回。
if(!resMap.get()) return -1;
if(root == null) return -1;
int left = deepth(root.left);
int right = deepth(root.right);
//当前节点不满足,将结果置为false;
if(Math.abs(left -right) > 1)
resMap.set(false);
return Math.max(left,right) + 1;
}
}
- 判断段二叉树是否为二叉搜索树
public class Solution {
public boolean isValid(TreeNode root,int max,int min){
//分析:二叉搜索数左子树所有节点小于父节点,右子树的所有节点大于父节点
//即父节点同时满足大于左子树最大的节点,小于右子树最小的节点。
if(root == null ) return true;
//当前节点不满足条件return false;
if(root.val > max || root.val < min) return false;
//当前节点满足,递归判断左右子树是否满足,
//递归左子树那么max = root.val,min = min,因为左子树必须全部小于本节点的值,
//递归右子树那么max = max,min = root.val 因为右子树必须全部大于本节点的值,
return isValid(root.left,root.val,min) && isValid(root.right,max,root.val);
}
}