UCI机器学习数据库的网址:http://archive.ics.uci.edu/ml/
数据库不断更新,是所有学习人工智能、机器学习等都需要用到的数据库,是看文章、写论文、测试算法的必备数据集。数据库种类涉及生活、工程、科学各个领域,记录数也是从少到多,最多达几十万条。
UCI数据可以使用Matlab的dlmread或textread读取,不过,需要先将不是数字的类别用数字,比如1/2/3等替换,否则读入不了数值,当字符了。
dlmread和textread的用法详见Matlab帮助。
每个数据文件(*.data)包含以“属性-值”对形式描述的很多个体样本的记录。对应的*.info文件包含的大量的文档资料 。(有些文件_generate_ databases;他们不包含*.data文件。)作为数据集和领域知识的补充,在utilities目录里包含了一些在使用这一数据集时的有用资料。
地址 http://www.ics.uci.edu/~mlearn/MLRepository.html,这里的UCI数据集可以看作是通过web的远程拷贝。作为选择,这些数据同样可以通过ftp获得,地址为:ftp://ftp.ics.uci.edu可是使用匿名登陆ftp,在pub/machine-learning-databases目录中找到。
注意:
UCI一直都在寻找可加入的新数据,这些数据将被写入incoming子目录中。希望您能贡献您的数据,并提供相应的文档。谢谢——贡献过程可以参考DOC-REQUIREMENTS文件。目前,多数数据使用下面的格式 :一个实例一行,没有空格,属性值之间使用逗号“,”隔开,并且缺少的值使用问号“?”表示。并请在做出您的贡献后提醒一下站点管理员:ml-repository@ics.uci.edu
下面以UCI中IRIS为例介绍一下数据集
ucidata\iris中有三个文件:
Index
iris.data
iris.names
index为文件夹目录,列出了本文件夹里的所有文件,如iris中index的内容如下:
Index of iris
18 Mar 1996 105 Index
08 Mar 1993 4551 iris.data
30 May 1989 2604 iris.names
iris.data为iris数据文件,内容如下:
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
……
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
……
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
……
如上,属性直接以逗号隔开,中间没有空格(5.1,3.5,1.4,0.2,),最后一列为本行属性对应的值,即决策属性Iris-setosa
。
iris.names介绍了irir数据的一些相关信息,如数据标题、数据来源、以前使用情况、最近信息、实例数目、实例的属性等,如下所示部分:
……
7. Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica
……
9. Class Distribution: 33.3% for each of 3 classes.
本数据的使用实例请参考其他论文,或本站后面的内容。