COMFYUI教程 MimicMotion

COMFYUI能做到的,远不止于图像和视频~

数字人,现在也是comfyUI可以做到的~

相关项目:

ComfyUI-live-portrait (动态表情对齐)

LivePortrait是快手推出的开源人像动画生成框架,专注于高效、可控地将驱动视频的表情和姿态迁移至静态或动态人像,创造出富有表现力的视频。

ComfyUI-mimic-motion (动作迁移)

MimicMotion 是由腾讯公司推出的一款AI人像动态视频生成框架。该框架利用先进的技术,能够根据用户提供的单个参考图像和一系列要模仿的姿势,生成高质量、姿势引导的人类动作视频。MimicMotion 的核心在于其置信度感知的姿态引导技术,确保视频帧的高质量和时间上的平滑过渡。

ComfyUI-echo-mimic (数字人语音唇形对齐)

EchoMimic是阿里蚂蚁集团推出的A!数字人开源项目,赋予静态图像以生动语音和表情。通过深度学习模型结合音频和面部标志点,创造出高度逼真的动态肖像视频。

目前,以上三个项目都能通过COMFYUI整合起来。

这是三个最近比较好的关于数字人的项目,效果在同类领域都是目前表现最好的。完全取代了之前的animate anyone/ musepose,musetalk等。

1. MimicMotion简介

MimicMotion 是由腾讯公司推出的一款人工智能人像动态视频生成框架。该框架利用先进的技术,能够根据用户提供的单个参考图像和一系列要模仿的姿势,生成高质量、姿势引导的人类动作视频。MimicMotion 的核心在于其置信度感知的姿态引导技术,确保视频帧的高质量和时间上的平滑过渡。

全民舞王windows+comfyui
链接:https://pan.quark.cn/s/990b8532c358

2. 功能特色

MimicMotion 的功能特色包括:

  • 生成多样化视频:能够根据用户提供的姿态指导生成各种动作的视频内容,如舞蹈、运动或日常活动。
  • 控制视频长度:用户可以指定视频的持续时间,从几秒的短片段到几分钟甚至更长的完整视频。
  • 姿态引导控制:使用参考姿态作为条件,确保视频内容在动作上与指定姿态保持一致,实现高度定制化的视频生成。
  • 细节质量保证:特别关注视频中的细节,尤其是手部等容易失真的区域,通过置信度感知的策略提供更清晰的视觉效果。
  • 时间平滑性:确保视频帧之间的过渡平滑,避免卡顿或不连贯的现象,使视频看起来更加流畅自然。
  • 减少图像失真:通过置信度感知的姿态引导,减少由于姿态估计不准确导致的图像失真。
  • 长视频生成:采用渐进式潜在融合技术,生成长视频时保持高时间连贯性。
  • 资源消耗控制:优化算法以确保资源消耗保持在合理范围内,即使在生成较长视频时也能有效地管理计算资源。

3. 官网入口

MimicMotion 的官网提供了项目的详细信息,包括技术原理、使用教程和下载链接。用户可以通过官网进一步了解框架的功能和如何使用它。具体的官网入口可以通过搜索 “MimicMotion 官网” 找到,或者访问腾讯相关的技术平台页面。
https://tencent.github.io/MimicMotion/
https://github.com/kijai/ComfyUI-MimicMotionWrapper

在这里插入图片描述
下载模型
在这里插入图片描述
在这里插入图片描述

  1. 技术原理
    MimicMotion 的技术原理涉及多个方面:

姿态引导的视频生成:利用用户提供的姿态序列作为输入条件,引导视频内容的生成。
置信度感知的姿态指导:通过分析姿态估计模型提供的置信度分数,对姿态序列中的每个关键点进行加权,以减少不准确姿态估计对生成结果的影响。
区域损失放大:针对手部等容易失真的区域,在损失函数中增加权重,提高生成视频的手部细节质量。
潜在扩散模型:使用潜在扩散模型提高生成效率和质量,减少计算成本。
渐进式潜在融合:生成长视频时,通过逐步融合重叠帧的潜在特征,实现视频段之间的平滑过渡。
预训练模型的利用:基于预训练的视频生成模型(如Stable Video Diffusion, SVD),减少训练所需的数据量和计算资源。
U-Net和PoseNet的结构:模型结构包括用于空间时间交互的U-Net和提取姿态序列特征的PoseNet,共同实现高质量的视频生成。

  1. 如何体验MimicMotion?
    要体验 MimicMotion,用户需要准备输入参考图像和姿势序列。然后,可以使用 MimicMotion 模型进行视频生成,并根据需要调整置信度感知姿态引导的参数。此外,应用区域损失放大策略可以优化特定区域的图像质量。利用渐进式潜在融合策略,用户可以生成长视频,并通过重叠扩散技术生成任意长度的视频。进行用户研究和消融研究可以帮助评估和改进视频生成效果。

https://tencent.github.io/MimicMotion/
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 下载 MimicMotion 工作流 为了下载和设置 MimicMotion 工作流,可以遵循以下方法: #### 方法一:通过官方代码仓库获取 访问 MimicMotion 的官方 GitHub 仓库[^1]。该仓库包含了项目的所有源码以及必要的文档说明。通常,在项目的根目录会有一个 `README.md` 文件,其中提供了详细的安装指南和依赖项列表。 对于想要深入了解 MimicMotion 架构或希望基于此开源工具做二次开发的研究者来说,这是最推荐的方式之一。 ```bash git clone https://github.com/Tencent/MimicMotion.git cd MimicMotion pip install -r requirements.txt ``` #### 方法二:利用算家云平台部署模型 如果目标是在云端快速搭建并运行 MimicMotion 模型,则可以选择按照特定教程操作[^2]。这种方式适合那些更倾向于使用现成解决方案而非自行编译环境的用户群体。 #### 方法三:手动下载所需组件 另一种方式是从指定位置单独下载所需的插件包,并将其放置于 ComfyUI 安装目录内[^3]。这种方法适用于已经拥有基础框架但缺少某些功能模块的情况。 具体步骤如下: - 访问提供这些资源的地方; - 找到对应的版本进行下载; - 解压缩后复制至 `\ComfyUI\` 目录下; #### 方法四:下载完整的整合包 最后一种方案是直接从可信渠道获得一个包含所有必要文件在内的打包文件[^4]。这通常是最快捷的方法,尤其是当面对复杂配置需求时尤为有效。 需要注意的是,无论采用哪种途径来获取 MimicMotion 工作流的相关资料,都应确保所使用的软件来源可靠合法,并仔细阅读相关许可协议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赤胜骄阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值