hdu 1160 FatMouse's Speed

1.题目

http://acm.hdu.edu.cn/showproblem.php?pid=1160

2.分析

由于本题目是在[1,i-1]中寻找与第i个的兼容序列,因此每次都需要便利一下前i-1个值,依然类似阶梯问题。

决策:当处理j的时候,前边共有j-1个决策,找相容的,记录最大值
亮点:用前驱数组记录最长的链,然后递归实现正序输出,妙~~~

3.复杂度

时间复杂度O(N^2);空间复杂度O(N);

4.涉及内容

动态规划

5.感想

本来感觉可以使用最长单调递增子序列的O(NLogN)的优化方法,但是,本题要求求出最长兼容序列(最长递增子序列)并输出该序列,而优化方法不能得到具体序列值,因此只能使用O(N^2)的算法

6.代码

#include <iostream>
#include <vector>
using namespace std;
typedef struct{
	int weight,speed;
	int num,pre;
} Mice;
Mice mices[10001];
int num[10001]={1,1};
int cmp(const void *a, const void *b)
{
	if( (*(Mice *)a).weight > (*(Mice *)b ).weight ) return 1;
	else if( (*(Mice *)a).weight == (*(Mice *)b ).weight && (*(Mice *)b).speed < (*(Mice *)a).speed ) 

return 1;
	else return -1;
}
void print(int i)
{
	if(mices[i].pre==0) {cout<<mices[i].num<<endl; return ;}
	print(mices[i].pre);
	cout<<mices[i].num<<endl;
}
int main()
{
	//freopen("in.txt","r",stdin);
	int w,s,i=0,max=0,index=0;
	while(cin>>w>>s)
	{
		++i;mices[i].weight=w,mices[i].speed=s,mices[i].num=i;
	}
	qsort(mices+1,i,sizeof(mices[0]),cmp);
	for(int j=2;j<=i;++j)
	{
		num[j]=1;
		for(int k=1;k<j;++k)
		{
			if(mices[k].weight<mices[j].weight && mices[k].speed>mices[j].speed )
			{
				if(num[k]+1 > num[j])
				{
					num[j]=num[k]+1;
					mices[j].pre=k;
				}
			}
		}
		index=(max==num[j])?j:index;
		max=max>num[j]?max:num[j];
	}
	cout<<max<<endl;
	print(index);
	return 0;
}

7.参考文献

1.http://www.felix021.com/blog/read.php?1587 (单调最长递增子序列LIS的O(NLogN)算法分析)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值