1.题目
http://acm.hdu.edu.cn/showproblem.php?pid=1160
2.分析
由于本题目是在[1,i-1]中寻找与第i个的兼容序列,因此每次都需要便利一下前i-1个值,依然类似阶梯问题。
决策:当处理j的时候,前边共有j-1个决策,找相容的,记录最大值
亮点:用前驱数组记录最长的链,然后递归实现正序输出,妙~~~
3.复杂度
时间复杂度O(N^2);空间复杂度O(N);
4.涉及内容
动态规划
5.感想
本来感觉可以使用最长单调递增子序列的O(NLogN)的优化方法,但是,本题要求求出最长兼容序列(最长递增子序列)并输出该序列,而优化方法不能得到具体序列值,因此只能使用O(N^2)的算法
6.代码
#include <iostream>
#include <vector>
using namespace std;
typedef struct{
int weight,speed;
int num,pre;
} Mice;
Mice mices[10001];
int num[10001]={1,1};
int cmp(const void *a, const void *b)
{
if( (*(Mice *)a).weight > (*(Mice *)b ).weight ) return 1;
else if( (*(Mice *)a).weight == (*(Mice *)b ).weight && (*(Mice *)b).speed < (*(Mice *)a).speed )
return 1;
else return -1;
}
void print(int i)
{
if(mices[i].pre==0) {cout<<mices[i].num<<endl; return ;}
print(mices[i].pre);
cout<<mices[i].num<<endl;
}
int main()
{
//freopen("in.txt","r",stdin);
int w,s,i=0,max=0,index=0;
while(cin>>w>>s)
{
++i;mices[i].weight=w,mices[i].speed=s,mices[i].num=i;
}
qsort(mices+1,i,sizeof(mices[0]),cmp);
for(int j=2;j<=i;++j)
{
num[j]=1;
for(int k=1;k<j;++k)
{
if(mices[k].weight<mices[j].weight && mices[k].speed>mices[j].speed )
{
if(num[k]+1 > num[j])
{
num[j]=num[k]+1;
mices[j].pre=k;
}
}
}
index=(max==num[j])?j:index;
max=max>num[j]?max:num[j];
}
cout<<max<<endl;
print(index);
return 0;
}
7.参考文献
1.http://www.felix021.com/blog/read.php?1587 (单调最长递增子序列LIS的O(NLogN)算法分析)