目标检测原理
文章平均质量分 93
目标检测原理,RCNN网络基础,YOLO系列算法
AI妈妈手把手
Hello,大家好,先做一个简单的自我介绍,我是[AI妈妈],一位35+并且在软件开发领域摸爬滚打十余年的技术人,见证了技术迭代如何改变行业生态。如今,在平衡家庭与工作的间隙,我开启了人工智能领域的学习之旅——从Python基础到机器学习算法,从数据预处理到模型调优,我坚持用业余时间啃下每一块硬骨头,现在我想把学习到的经验总结分享给大家,希望能与大家共同成长,一起加油吧~~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Batch Normalization解析:为什么YOLO v2大量使用这项技术?
在深度学习模型训练过程中,大家是否遇到过这样的问题:模型收敛速度慢、训练过程不稳定、对学习率选择非常敏感?这些问题在深度神经网络中尤为常见,而Batch Normalization(批归一化)正是解决这些问题的"灵丹妙药"。今天我们就来深入解析Batch Normalization技术,并揭秘为什么YOLO v2要大量使用这一技术。 是深度学习中的一种技术,由Sergey Ioffe和Christian Szegedy于2015年提出。它的核心思想很简单:。原创 2025-10-31 08:00:00 · 846 阅读 · 0 评论 -
YOLO V2全面解析:更快、更准、更强大的目标检测算法
在目标检测领域,YOLO V1无疑带来了一场革命性的变革。然而,正如所有初代产品一样,YOLO V1也存在一些明显的局限性:定位不够准确、对小目标检测效果差、召回率较低等问题逐渐凸显。今天我们要深入解析的YOLO V2(又称YOLO9000),正是在这样的背景下应运而生。它通过一系列精巧的改进,实现了"更准(Better)、更快(Faster)、更强(Stronger)" 三大目标,成为目标检测发展历程中的重要里程碑。原创 2025-10-29 19:30:00 · 779 阅读 · 0 评论 -
【YOLO V1损失函数全景解析】丨目标检测的核心引擎如何工作?
大家好,我是CSDN的技术分享博主。今天我们来聊聊YOLO V1这个目标检测领域里程碑式算法中最精妙的部分——损失函数。如果说YOLO V1的网格划分思想是它的“骨架”,网络结构是它的“肌肉”,那么损失函数就是它的“灵魂”和“引擎”。它决定了模型如何从错误中学习,如何平衡各种任务,最终实现精准的目标检测。很多同学理解YOLO V1的思想很容易,但一到损失函数就头疼。本文将用最直观的方式,带你彻底掌握YOLO V1损失函数的每一个细节!🚀YOLO V1的损失函数设计体现了。原创 2025-10-29 08:30:00 · 559 阅读 · 0 评论 -
一文看懂:YOLO V1目标检测算法原理解析
在YOLO(You Only Look Once)问世之前,目标检测算法就像是一个人拿着放大镜在图片上一点点寻找目标:先找可能包含物体的区域,再对这些区域进行分类。这种方法准确但速度慢,难以实时处理。2016年,Joseph Redmon等人提出YOLO V1,带来了一种革命性的思路:为什么不把目标检测当作一个回归问题,只需"看一眼"图片就能直接输出所有检测结果呢? 这就是YOLO名称的由来——You Only Look Once。原创 2025-10-27 18:00:56 · 936 阅读 · 0 评论 -
深入浅出Faster R-CNN:目标检测的里程碑算法
在日常生活中,我们经常需要让计算机"看懂"图像——不仅仅是知道图像里有什么,还要知道这些东西在什么位置。这就是目标检测(Object Detection) 的任务:在图像中找出感兴趣的目标(物体),并确定它们的位置和类别。想象一下,如果你正在教一个小朋友认识动物:不仅要告诉他"这是狗",还要用手指着狗的位置。目标检测算法做的就是类似的事情!🐶Faster R-CNN是目标检测领域的一个重要里程碑,它通过引入区域提议网络(RPN)。原创 2025-10-27 18:45:00 · 2344 阅读 · 0 评论 -
一文搞懂目标检测关键技术ROI Pooling
在目标检测任务中,我们通常会遇到一个问题:如何将不同大小的候选框(Region of Interest, ROI)转换为固定大小的特征表示? 这是因为目标检测模型中的全连接层需要固定长度的输入。想象一下,如果你有一堆不同大小的盒子(候选框),但需要一个标准大小的盒子来放入你的展示柜(全连接层),你会怎么做?这就是ROI Pooling要解决的问题!🎯特性ROI Align坐标处理两次量化(取整)保留浮点数精度有误差(~10% mAP损失)高精度计算复杂度。原创 2025-09-10 18:00:03 · 1395 阅读 · 0 评论 -
Fast RCNN详解:目标检测的飞跃之旅
Fast RCNN是目标检测领域的一个重要里程碑,它通过共享卷积计算、引入ROI Pooling层和使用多任务损失函数,巧妙地解决了RCNN存在的效率低下和训练繁琐的问题。关键要点Fast RCNN的核心创新是共享卷积计算和ROI Pooling层相比RCNN,Fast RCNN速度提升近200倍,训练更加简单Fast RCNN实现了端到端训练,统一了分类和定位任务尽管已被Faster RCNN等算法超越,Fast RCNN的思想仍影响深远。原创 2025-09-10 08:15:00 · 921 阅读 · 0 评论 -
从OverFeat到RCNN:目标检测领域的跨越式进步
各位小伙伴们大家好!在之前的文章中,我们介绍了OverFeat模型👇点击回顾OverFeat模型原理,它是早期将深度学习应用于目标检测的开拓者之一。不过OverFeat存在一些明显局限性:它采用滑动窗口方式在图像上不同位置和尺度进行检测,这种方法类似一种暴力穷举方式,计算量大且效率不高,由于窗口大小问题,而且难以精确处理不同长宽比的物体。原创 2025-09-09 08:15:00 · 1076 阅读 · 0 评论 -
Overfeat模型:图像识别界的“多面手“来啦!
Overfeat是它证明了CNN可以同时做分类和定位(启发R-CNN)它的全卷积设计思想被后续所有检测模型借鉴它的多尺度特征处理方式至今仍在使用类比学习:就像学数学要先学加减法,再学乘除法——Overfeat就是图像识别领域的"基础运算"。原创 2025-09-05 08:15:00 · 356 阅读 · 0 评论 -
目标检测双雄:一阶段与二阶段检测器全解析
目标检测是计算机视觉中的一项重要技术,它的任务是从图像或视频中找出感兴趣的目标,并检测出它们的位置和大小。与简单的图像分类不同,目标检测需要同时解决两个问题:物体识别(分类) 和物体定位(边界框回归)。这就好比不仅要认出图片中有猫和狗,还要用框标出它们各自在什么位置。选一阶段:如果你需要实时检测(如自动驾驶、直播监控),或资源有限(移动端、嵌入式设备)。选二阶段:如果你追求极致精度(如医疗诊断、精密制造),或目标尺寸差异大、背景复杂。原创 2025-09-05 19:15:00 · 1451 阅读 · 0 评论 -
GoogLeNet:深度学习中的“卷积网络变形金刚“
开创多尺度特征融合范式Inception思想影响后续众多网络设计证明参数效率的重要性用更少参数实现更好性能成为新追求推动模块化网络设计网络由可复用模块堆叠而成🌟 关键启示:在深度学习领域,结构创新有时比单纯增加深度更能带来突破。GoogLeNet通过巧妙的Inception模块设计,实现了“少即是多”(Less is More)的哲学,为后续MobileNet、EfficientNet等高效网络奠定基础。原创 2025-08-29 22:00:00 · 842 阅读 · 0 评论 -
目标检测的“精准度标尺“:IOU(交并比)全解析
直观性:结果在0-1之间,易于理解尺度不变性:不受框大小影响对称性广泛应用:从评估到损失函数设计可解释性:直接对应检测质量互动环节你在使用IOU时遇到过哪些坑?或者对哪个变体(GIoU/DIoU等)最感兴趣?欢迎在评论区分享你的经验!原创 2025-08-15 08:15:00 · 1289 阅读 · 0 评论 -
AlexNet:点燃深度学习革命的「卷积神经网络之王」
AlexNet的成功并非偶然,而是创新技术 + 工程突破技术面:ReLU、Dropout、数据增强解决训练难题工程面:双GPU并行、重叠池化榨干硬件性能影响力:点燃深度学习十年黄金期,催生CV、NLP、RL等领域大模型✨ 关注我,下期将带来更现代的ResNet残差网络解析!原创 2025-08-29 18:30:00 · 1454 阅读 · 0 评论 -
非极大值抑制(NMS)详解:目标检测中的“去重神器”
NMS是什么:目标检测的后处理算法,用于去除冗余框;核心思想:保留局部最高分框,抑制与其高度重叠的框;关键参数:IoU阈值(常用0.5~0.7);代码实现:10行Python即可搞定(排序 + IoU计算 + 迭代抑制);适用场景:任何输出多个候选框的目标检测模型(YOLO、SSD等)。🌟 一句话牢记NMS:“只留最自信的框,重叠太高的删光光!今天的分享就到这里啦,欢迎评论区讨论!原创 2025-08-15 17:46:06 · 1313 阅读 · 0 评论 -
Labelme从安装到标注:零基础完整指南
在labelme软件中,最主要的几个功能如下:1️⃣打开:只打开一张图像进行标注。2️⃣打开目录:点击后会弹出一个窗口,选择一个文件夹,文件夹中包含要进行标注的图像。3️⃣上一幅:在打开目录的情况下,点击后可切换到上一张图片,也可以使用快捷键a。4️⃣下一幅:在打开目录的情况下,点击后可切换到下一张图片,也可以使用快捷键d。5️⃣保存:在标注完成后,会生成标签文件。保存选项即选择本地的一个文件夹保存标签文件。建议在选择完打开目录后,便选择一个文件夹路径保存将要生成的标签文件。原创 2025-08-12 19:45:00 · 3418 阅读 · 0 评论 -
选择性搜索(Selective Search):目标检测的“候选区域生成”艺术
在计算机视觉领域,目标检测(Object Detection)是一个核心任务,它不仅要识别图像中有什么物体(分类问题),还要找出这些物体的具体位置(定位问题)。在深度学习时代之前,滑动窗口法(Sliding Window)是一种常用的目标检测方法。想象一下,为了找到图像中的目标,我们需要用一个“框”在图像上以不同的尺寸和长宽比从左到右、从上到下地滑动,并对每个框内的图像块进行分类判断。原创 2025-09-09 08:15:00 · 870 阅读 · 0 评论
分享