HDU 1016 Prime Ring Problem 深搜


A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.


 

Input

n (0 < n < 20).
 

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
 

Sample Input

    
    
6 8
 

Sample Output

    
    
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
题意:就是给定一个数n,让你找出所有组成的圆圈,并且组成的圆圈相邻的两个数的和必须是质数,圆圈的首位是1,
思路:每次从2开始搜索,并且用过的数标记掉
AC代码:
#include <iostream> #include <cstdio> #include<cmath> #include<algorithm> using namespace std; int n,sc=1; int a[21]; int visit[21]={0}; int ok(int x,int y){//判断质数     for(int i=2;i<=sqrt(x+y);++i){         if((x+y)%i==0){             return 0;         }     }     return 1; } void dfs(int x){//x表示已经选的数的个数     if(x==n&&ok(a[x],1)){             printf("%d",a[1]);         for(int j=2;j<=n;j++){             printf(" %d",a[j]);         }         printf("\n");     return;     }     for(int i=2;i<n+1;i++){         if(visit[i]==0&&ok(a[x],i)){             a[++x]=i;             visit[i]=1;             dfs(x);             visit[i]=0;             x--;         }     } } int main(){     while(~scanf("%d",&n)){            a[0]=0;            a[1]=1;            printf("Case %d:\n",sc++);            dfs(1);            printf("\n");     }    return 0; }
注意:在输入的时候!=EOF,求质数的过程中<=sqrt();
这一题和HDU 1258 都用到了先把一些值储存再打印。。。做过那道这道就简单了。。。。。。。。。。fighting。。。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值