qiuzitao深度学习之PyTorch实战(四)

史上最简单、实际、通俗易懂的PyTorch实战系列教程!(新手友好、小白请进、建议收藏)

一、Tensor常见的形式

  • 0: scalar           标量数值
  • 1: vector           矢量/向量
  • 2: matrix           矩阵
  • 3: n-dimensional tensor      高维特征向量

例子:

import torch
from torch import tensor

Scalar:

x = tensor(42.)
x

在这里插入图片描述

x.dim()

在这里插入图片描述

2 * x

在这里插入图片描述

x.item()

在这里插入图片描述
Vector:

例如: [-5., 2., 0.],在深度学习中通常指特征,例如词向量特征,某一维度特征等
𝑣⃗ =[𝑣1,𝑣2,…,𝑣𝑛]

v = tensor([1.5, -0.5, 3.0])
v

在这里插入图片描述

v.dim()

在这里插入图片描述

v.size()

在这里插入图片描述

Matrix:

  • 一般计算的都是矩阵,通常都是多维的
M = tensor([[1., 2.], [3., 4.]])
M

在这里插入图片描述

M.matmul(M)

在这里插入图片描述

tensor([1., 0.]).matmul(M)

在这里插入图片描述

M * M

在这里插入图片描述

tensor([1., 2.]).matmul(M)

在这里插入图片描述
在这里插入图片描述

参考:唐宇迪2020年深度学习框架PyTorch实战教程
   qiuzitao技术博客

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qiuzitao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值