史上最简单、实际、通俗易懂的PyTorch实战系列教程!(新手友好、小白请进、建议收藏)
一、Tensor常见的形式
- 0: scalar 标量数值
- 1: vector 矢量/向量
- 2: matrix 矩阵
- 3: n-dimensional tensor 高维特征向量
例子:
import torch
from torch import tensor
Scalar:
x = tensor(42.)
x
x.dim()
2 * x
x.item()
Vector:
例如: [-5., 2., 0.],在深度学习中通常指特征,例如词向量特征,某一维度特征等
𝑣⃗ =[𝑣1,𝑣2,…,𝑣𝑛]
v = tensor([1.5, -0.5, 3.0])
v
v.dim()
v.size()
Matrix:
- 一般计算的都是矩阵,通常都是多维的
M = tensor([[1., 2.], [3., 4.]])
M
M.matmul(M)
tensor([1., 0.]).matmul(M)
M * M
tensor([1., 2.]).matmul(M)
参考:唐宇迪2020年深度学习框架PyTorch实战教程
qiuzitao技术博客