(《机器学习》完整版系列)第7章 贝叶斯分类器——7.2 再谈线性判别分析(高斯分布下的线性判别分析LDA实现了贝叶斯分类器)

3.3 线性判别分析LDA 中我们讨论了线性判别分析LDA,在6.5 核对率回归和核线性判别分析中我们讨论了核线性判别分析KLDA,这里我们证明在一种常见的特殊情况下(二分类中两个类别中的数据都是高斯分布,且两类的方差同、先验同),线性判别分析LDA实现了贝叶斯分类器。

再谈线性判别分析

设两类别高斯分布的协方差矩阵相同,不妨设该协方差矩阵为 V \mathbf{V} V。注:协方差矩阵为非负定,故由定义知: 对一般的 w \boldsymbol{w} w有不等式 w T V w > 0 \boldsymbol{w}^\mathrm{T}\mathbf{V}\boldsymbol{w}>0 wTVw>0

(1)线性判别分析LDA

由【西瓜书式(3.39)】得
w = S w − 1 ( μ 0 − μ 1 ) = ( V + V ) − 1 ( μ 0 − μ 1 ) (由【西瓜书式(3.33)上一个等号】) = 1 2 V − 1 ( μ 0 − μ 1 ) \begin{align} \boldsymbol{w} & ={\mathbf{S}}_{\mathrm{w}}^{-1}(\boldsymbol{\mu }_0-\boldsymbol{\mu }_1)\notag \\ & =(\mathbf{V}+\mathbf{V})^{-1}(\boldsymbol{\mu }_0-\boldsymbol{\mu }_1) \qquad \text{(由【西瓜书式(3.33)上一个等号】)} \notag \\ & =\frac{1}{2}\mathbf{V}^{-1}(\boldsymbol{\mu }_0-\boldsymbol{\mu }_1) \tag{7.19} \end{align} w=Sw1(μ0μ1)=(V+V)1(μ0μ1)(由【西瓜书式(3.33)上一个等号】)=21V1(μ0μ1)(7.19)

由于两类间具有很好的对称性,故可在降维后的空间中用点到各类中心的距离进行判别,即此时线性判别分析LDA为:


∥ w T x − w T μ 0 ∥ 2 ⩽ ∥ w T x − w T μ 1 ∥ 2 \begin{align} \| \boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\boldsymbol{w}^\mathrm{T}\boldsymbol{\mu }_0 \|^2 \leqslant \| \boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\boldsymbol{w}^\mathrm{T}\boldsymbol{\mu }_1 \|^2 \tag{7.20} \end{align} wTxwTμ02wTxwTμ12(7.20)
时,判别 x ∈ D 0 \boldsymbol{x} \in D_0 xD0,否则 x ∈ D 1 \boldsymbol{x} \in D_1 xD1

将式(7.20)进行转化
w T ( x − μ 0 ) ( x − μ 0 ) T w ⩽ w T ( x − μ 1 ) ( x − μ 1 ) T w w T ( μ 0 − μ 1 ) [ ( μ 0 + μ 1 ) T − 2 x T ] w ⩽ 0 w T 2 V w [ ( μ 0 + μ 1 ) − 2 x ] T w ⩽ 0 (由式(7.19)) [ ( μ 0 + μ 1 ) − 2 x ] T w ⩽ 0 (由于 w T V w > 0 ) \begin{align} & \boldsymbol{w}^\mathrm{T}(\boldsymbol{x}-\boldsymbol{\mu }_0)(\boldsymbol{x}-\boldsymbol{\mu }_0)^\mathrm{T}\boldsymbol{w} \leqslant \boldsymbol{w}^\mathrm{T}(\boldsymbol{x}-\boldsymbol{\mu }_1)(\boldsymbol{x}-\boldsymbol{\mu }_1)^\mathrm{T}\boldsymbol{w}\notag \\ & \boldsymbol{w}^\mathrm{T}(\boldsymbol{\mu }_0-\boldsymbol{\mu }_1)[(\boldsymbol{\mu }_0+\boldsymbol{\mu }_1)^\mathrm{T}-2\boldsymbol{x}^\mathrm{T}]\boldsymbol{w}\leqslant 0\notag \\ & \boldsymbol{w}^\mathrm{T}2\mathbf{V}\boldsymbol{w}[(\boldsymbol{\mu }_0+\boldsymbol{\mu }_1)-2\boldsymbol{x}]^\mathrm{T}\boldsymbol{w}\leqslant 0 \qquad \text{(由式(7.19))}\notag \\ & \left[(\boldsymbol{\mu }_0+\boldsymbol{\mu }_1)-2\boldsymbol{x}\right]^\mathrm{T}\boldsymbol{w}\leqslant 0\qquad \text{(由于$\boldsymbol{w}^\mathrm{T}\mathbf{V}\boldsymbol{w}>0$)} \tag{7.21} \end{align} wT(xμ0)(xμ0)TwwT(xμ1)(xμ1)TwwT(μ0μ1)[(μ0+μ1)T2xT]w0wT2Vw[(μ0+μ1)2x]Tw0(由式(7.19)[(μ0+μ1)2x]Tw0(由于wTVw>0(7.21)

(2)二分类问题贝叶斯决策


R ( c 0   ∣   x ) ⩽ R ( c 1   ∣   x ) \begin{align} R(c_0\,|\,\boldsymbol{x})\leqslant R(c_1\,|\,\boldsymbol{x}) \tag{7.22} \end{align} R(c0x)R(c1x)(7.22)
时,判别 x ∈ D 0 \boldsymbol{x} \in D_0 xD0,否则 x ∈ D 1 \boldsymbol{x} \in D_1 xD1

由【西瓜书式(7.5)】,将式(7.22)进行转化:
P ( c 0   ∣   x ) ⩾ P ( c 1   ∣   x ) P ( c 0 , x ) ⩾ P ( c 1 , x ) P ( c 0 ) P ( x   ∣   c 0 ) ⩾ P ( c 1 ) P ( x   ∣   c 1 ) P ( x   ∣   c 0 ) ⩾ P ( x   ∣   c 1 ) (同先验 P ( c 0 ) = P ( c 1 ) ) \begin{align} & P(c_0\,|\,\boldsymbol{x})\geqslant P(c_1\,|\,\boldsymbol{x})\notag \\ & P(c_0,\boldsymbol{x})\geqslant P(c_1,\boldsymbol{x})\notag \\ & P(c_0)P(\boldsymbol{x}\,|\,c_0)\geqslant P(c_1)P(\boldsymbol{x}\,|\,c_1)\notag \\ & P(\boldsymbol{x}\,|\,c_0)\geqslant P(\boldsymbol{x}\,|\,c_1) \qquad\text{(同先验$P(c_0)=P(c_1)$)}\notag \end{align} P(c0x)P(c1x)P(c0,x)P(c1,x)P(c0)P(xc0)P(c1)P(xc1)P(xc0)P(xc1)(同先验P(c0)=P(c1)
高斯分布代入并取对数
− 1 2 ( x − μ 0 ) T V − 1 ( x − μ 0 ) ⩾ − 1 2 ( x − μ 1 ) T V − 1 ( x − μ 1 ) ( μ 0 − μ 1 ) T V − 1 ( μ 0 + μ 1 − 2 x ) ⩽ 0 w T ( μ 0 + μ 1 − 2 x ) ⩽ 0 (取 w T = ( μ 0 − μ 1 ) T V − 1 ) \begin{align} & -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu }_0)^\mathrm{T}\mathbf{V}^{-1}(\boldsymbol{x}-\boldsymbol{\mu }_0) \geqslant -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu }_1)^\mathrm{T}\mathbf{V}^{-1}(\boldsymbol{x}-\boldsymbol{\mu }_1) \notag \\ & (\boldsymbol{\mu }_0-\boldsymbol{\mu }_1)^\mathrm{T}\mathbf{V}^{-1}(\boldsymbol{\mu }_0+\boldsymbol{\mu }_1-2\boldsymbol{x})\leqslant 0\notag \\ & \boldsymbol{w}^\mathrm{T}(\boldsymbol{\mu }_0+\boldsymbol{\mu }_1-2\boldsymbol{x})\leqslant 0\quad \text{(取$\boldsymbol{w}^\mathrm{T}=(\boldsymbol{\mu }_0-\boldsymbol{\mu }_1)^\mathrm{T}\mathbf{V}^{-1}$)} \tag{eq:07-67} \end{align} 21(xμ0)TV1(xμ0)21(xμ1)TV1(xμ1)(μ0μ1)TV1(μ0+μ12x)0wT(μ0+μ12x)0(取wT=(μ0μ1)TV1(eq:07-67)

式(7.21)与式(7.23)一致,即在所设条件下,线性判别分析式(7.20)能得到贝叶斯最优分类器式(7.22)。

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:7.1 贝叶斯决策论(贝叶斯学派与频率学派有很大的分岐)
下一篇:7.3 极大似然法(似然:类条件概率)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值